UNIFIED HANDOUT

MATERIALS AND STRUCTURES - #M-10 Fall, 2008

Learning Objectives Summary Sheet

(Units U-A, U-B, M1.1-M1.5, M2.1-2.4, M3.1-3.4)

Through participation in the lectures, recitations, and work associated with each noted Unit, it is intended that you will be able to.....

Unit U-A

-apply the language of engineering systems (units, dimensions, coordinates)
-describe systems in different coordinate systems using transformations and other concepts

<u>Unit U-B</u>

-utilize the basic concepts associated with forces and moments
-determine moments about any location as caused by forces
-**utilize** the concept of a couple

<u>Unit M1.1</u>

-describe what engineering is about in general
-explain the basic concepts, limitations, and utility associated with modeling and a model
-describe a structure, its functions, and associated objectives and tradeoffs
-list the "Three Great Principles" of solid mechanics

<u>Unit M1.2</u>

-**apply** the principle/concept of equilibrium to **determine** the applied and transmitted forces and moments, and related motion, for a particle, set of particles, or body
-**model** a body/system and external forces and moments acting on such
-apply the concept of equipollent force systems to model a set of forces

<u>Unit M1.3</u>

-**represent** the boundary conditions of a body via the use of the idealizations of supports
-**model** a body/system and forces and moments acting on such through the use of a Free Body Diagram
-**classify** mechanical systems into three categories
-calculate the reaction forces in a statically determinate system

-**model** a truss structure through the use of a Free Body Diagram
-calculate the reaction forces for a statically determinate truss structure
-determine the loads carried in each bar of a truss through the use of the Method of Joints and the Method of Sections

<u>Unit M1.5</u>

-explain the basic components of a constitutive relationship
-apply the compatibility of displacement concept for a variety of structural configurations
-employ the "Three Great Principles" to determine the forces and deflections of a statically indeterminate structural configuration

<u>Unit M2.1</u>

-employ the tensor/indicial notation to express equations and relations
-recognize, explain, and apply two special parameters (Kronecker delta, permutation tensor)

<u>Unit M2.2</u>

-explain the concept and types of stress and how such is manifested in materials and structures
-use the various ways of describing states of stress
-apply the concept of equilibrium to the state of stress

<u>Unit M2.3</u>

-explain the concept and types of strains and how such is manifested in materials and structures
-**use** the various ways of **describing** states of strain
-describe the relationship between strain and displacement in a body
-apply the concept of compatibility to the state of strain

<u>Unit M2.4</u>

-explain the bases for the transformations of the states of stress, strain, and deformation
-cite the equations for 3-D transformations of stress, strain, and deformation
-transform the states of stress, strain, and deformation for any 2-D configuration
-apply the concepts associated with principal stress/strain/axes

Overall for Block M3

-employ a continuum version of the constitutive law of elasticity
-explain the factors that contribute to material properties in terms of behavior that can and cannot be controlled
-discuss the limits of the model of linear elasticity for materials
-summarize the key components to solve problems of elasticity

<u>Unit M3.1</u>

-explain what a material property is and represents
-cite various material properties and types thereof
-indicate how material properties are used in material selection for structural applications and employ such

<u>Unit M3.2</u>

-explain the meaning of the elasticity and compliance tensors and analyze their mathematical details
-describe the behavior of a material in terms of constitutive response
-discuss engineering/elastic constants, their measurement, and their relationship to tensors
-employ a continuum version of the constitutive law of elasticity

<u>Unit M3.3</u>

-identify the various types of atomic bonds and the factors involved in such
-describe the atomic/molecular structure of materials and the effects on basic material behavior
-employ an atomic model to estimate the elastic modulus of materials
-explain the make-up of a composite and the contributors to its elastic response

<u>Unit M3.4</u>

-explain three basic phenomena associated with stress-strain behavior (basic response, classes of behavior, nonlinear response) in terms of atomic factors
-describe the role of scale in elastic response and the concept of "effective moduli"