S10: (10 points)
[a] $F(s)=\frac{K_{1}}{s+1}+\frac{K_{2}}{s+2}+\frac{K_{3}}{s+3}$

$$
\begin{aligned}
& K_{1}=\frac{18-66+54}{(1)(2)}=3 ; \quad K_{2}=\frac{72-132+54}{(-1)(1)}=6 \\
& K_{3}=\frac{162-198+54}{(-2)(-1)}=9 \\
& \therefore \quad f(t)=\left[3 e^{-t}+6 e^{-2 t}+9 e^{-3 t}\right] u(t)
\end{aligned}
$$

$[\mathbf{c}] s_{1,2}=-6 \pm \sqrt{36-100}=-6 \pm j 8$

$$
\begin{aligned}
& F(s)=\frac{11 s^{2}+172 s+700}{(s+2)(s+6-j 8)(s+6+j 8)} \\
& =\frac{K_{1}}{s+2}+\frac{K_{2}}{s+6-j 8}+\frac{K_{2}^{*}}{s+6+j 8} \\
& K_{1}=\frac{44-344+700}{4-24+100}=5 \\
& K_{2}=\frac{11(-6+j 8)^{2}+172(-6+j 8)+700}{(-4+j 8) j 16} \\
& =3-j 4=5 /-53.13^{\circ} \\
& \therefore f(t)=\left[5 e^{-2 t}+10 e^{-6 t} \cos \left(8 t-53.13^{\circ}\right)\right] u(t)
\end{aligned}
$$

S11: (10 points)
[b] $F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{(s+2)^{2}}+\frac{K_{3}}{s+2}$
$K_{1}=\frac{10(4)}{4}=10 ; \quad K_{2}=\frac{10(12-8+4)}{-2}=-40$
$K_{3}=\left.\frac{d}{d s}\left\{\frac{10\left(3 s^{2}+4 s+4\right)}{s}\right\}\right|_{s=-2}$
$=\left.\frac{10\left[(s)(6 s+4)-\left(3 s^{2}+4 s+4\right)\right]}{s^{2}}\right|_{s=-2}=20$
$F(s)=\frac{10}{s}-\frac{40}{(s+2)^{2}}+\frac{20}{s+2}$
$f(t)=\left[10-40 t e^{-2 t}+20 e^{-2 t}\right] u(t)$
[c] $s_{1,2}=-2 \pm \sqrt{4-5}=-2 \pm j 1$

$$
\left.\begin{aligned}
& F(s)=\frac{K_{1}}{s^{2}}+\frac{K_{2}}{s}+\frac{K_{3}}{s+2-j 1}+\frac{K_{3}^{*}}{s+2+j 1} \\
& K_{1}=\frac{50}{5}=10 \\
& K_{2}=\left.\frac{d}{d s}\left\{\frac{s^{3}-6 s^{2}+15 s+50}{s^{2}+4 s+5}\right\}\right|_{s=0} \\
& \\
& =\left.\frac{\left(s^{2}+4 s+5\right)\left(3 s^{2}-12 s+15\right)-\left(s^{3}-6 s^{2}+15 s+50\right)(2 s+4)}{\left(s^{2}+4 s+5\right)^{2}}\right|_{s=0} \\
& \quad=\frac{5(15)-50(4)}{25}=-5 \\
& K_{3}= \\
& (-2+j 1)^{3}=-2+j 11 ; \quad(-2+j 1)^{2}=3-j 4 \\
& s^{2}(s+2+j 1)
\end{aligned}\right|_{s=-2+j 1} \quad \begin{aligned}
K_{3} & =\frac{-2+j 11-6(3-j 4)+15(-2+j 1)+50}{(3-j 4)(j 2)} \\
& =3+j 4=5 / 53.13^{\circ} \\
F(s) & =\frac{10}{s^{2}}-\frac{5}{s}+\frac{5 / 53.13^{\circ}}{s+2-j 1}+\frac{5 L-53.13^{\circ}}{s+2+j 1} \\
f(t) & =\left[10 t-5+10 e^{-2 t} \cos \left(t+53.13^{\circ}\right)\right] u(t)
\end{aligned}
$$

S12: (10 points)
[d] $F(s)=\frac{K_{1}}{(s+2)^{3}}+\frac{K_{2}}{(s+2)^{2}}+\frac{K_{3}}{s+2}$

$$
\begin{aligned}
& K_{1}=s^{2}+6 s+\left.5\right|_{s=-2}=-3 \\
& K_{2}=\left.\frac{d}{d s}\left\{s^{2}+6 s+5\right\}\right|_{s=-2}=2 s+\left.6\right|_{s-2}=2 \\
& 2 K_{3}=\left.\frac{d}{d s}(2 s+6)\right|_{s=-2}=2 ; \quad K_{3}=1 \\
& F(s)=\frac{-3}{(s+2)^{3}}+\frac{2}{(s+2)^{2}}+\frac{1}{s+2} \\
& f(t)=-\frac{3 t^{2} e^{-2 t}}{2}+2 t e^{-2 t}+e^{-2 t}=\left[\left(2 t-1.5 t^{2}+1\right) e^{-2 t}\right] u(t)
\end{aligned}
$$

[c]

$$
F(s)=s+20 \begin{array}{r}
\mathrm{s}+5 \\
\begin{array}{r}
s^{2}+25 s+150 \\
\frac{s^{2}+20 s}{5 s+150} \\
\frac{5 s+100}{50}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& F(s)=s+5+\frac{50}{(s+20)}=s+5+\frac{50}{s+20} \\
& f(t)=\delta^{\prime}(t)+5 \delta(t)+50 e^{-20 t} u(t)
\end{aligned}
$$

