Mnified Engineenng Problen Set 3 week 4 Spring, 2009

SoLUTONS

$$
M 6(M 4.1)
$$

First deternine the expression for $q(x)$ and the relative magnitude of q oin terms of P.
(Cnoun fuctor for $g(x)(0<x<3<)$
$\theta f(x)=q_{0}$
(a) $x=0$
(2) $f(x)<0$
(a) $x=3 L$
(3) $q(x)$ varies linearly Yeweral solention:

$$
q(x)=a x+b \quad \text { (fum (3)) }
$$

ase (1) ond (2) in this experession:

$$
\begin{aligned}
& q_{0}=b \quad(\tan (1)) \\
& 0=a(3 L)+b \quad(\tan \text { (2) })
\end{aligned}
$$

So $s=$ qo $_{0}$ and then $a=-\frac{b}{3 L}=-\frac{80}{3 i}$
Fnally: $q(x)=q_{0}\left(-\frac{x}{3 L}+1\right)$ for $0<x<3<$
cheek candixius (o) end (2)

$$
\begin{aligned}
& \text { (B) } x=0, g(x)=80 \\
& \infty x=3 c, g(x)=0
\end{aligned}
$$

Now to defemine f_{0}, we know

$$
\int \text { sirtributed loadyy } d x=P
$$

eunct $q(x)=q_{0}-L<x<0$
So:

$$
\int_{-c}^{0} q_{0} d x+\int_{0}^{3 c} q_{0}\left(-\frac{x}{3 L}+1\right) d x=p
$$

procedingi

Page 3 of 27

$$
\begin{gathered}
\left.\left.q_{0} \times\right]_{-c}^{0}+\left(-\frac{q_{0} x^{2}}{6 c}+q_{0} x\right)\right]_{0}^{3 c}=\rho \\
\Rightarrow q_{0} c-q_{0} \frac{q L^{2}}{6 L}+3 q_{0} c=P \\
\frac{5}{2} q_{0} c=\rho \\
\operatorname{Rinaly}=q_{0}=\frac{2 P}{5 L}
\end{gathered}
$$

giving:

$$
f(x)= \begin{cases}\frac{2 P}{5 C} & -L<x<0 \\ \frac{2 P}{5 L}\left(-\frac{x}{3 L}+1\right) & 0<x<3 L\end{cases}
$$

Proceed to:
(a) First step is to fran the Free ouch Riafraen:

Nese equitibricur.

$$
\begin{aligned}
& \sum F_{x}=0 \quad \rightarrow \quad H_{A}=0 \\
& \sum F_{z}=0 \quad q_{+} \Rightarrow V_{A}+V_{B}-P+\int_{-C}^{0} q_{0} d x \\
&+\int_{0}^{3 C} q_{0}\left(-\frac{x}{3 C}+1\right) d x=0
\end{aligned}
$$

Recall that the latter tho integrale $\sin t+P \ldots$.
… yieleling: $V_{A}+V_{B}=0$

$$
\begin{align*}
\sum_{A}=0(+ & P L+V_{B}(3 L)-\int_{-L}^{0} q_{0}|x| d x \tag{1}\\
& +\int_{0}^{3 C} q_{0}\left(-\frac{x}{3 L}+1\right) x d x=0 \\
\Rightarrow P L+3 V_{B} L- & \left.\left.q_{0} \frac{\left[x^{2} \mid\right.}{2}\right]_{-L}^{0}+\left(-\frac{q_{0} x^{3}}{9 L}+\frac{90 x^{2}}{2}\right)\right]_{0}^{3 L}=0
\end{align*}
$$

conthuing:

$$
\begin{aligned}
& P L+3 V_{B} L-\frac{q_{0} L^{2}}{2}-\frac{2 q q_{0} L^{3}}{9 L}+\frac{9 q_{0} L^{2}}{2}=0 \\
& P+3 V_{B}-3 q_{0} L+4 q_{0} L=0
\end{aligned}
$$

witu the urelue for q_{0} :

$$
P+3 V_{B}+\frac{2}{5} P=0
$$

Finally:

$$
V_{B}=-\frac{7}{15} P
$$

asigf(1): $V_{A}=+\frac{7}{15} P$
Suunmanizing, the reactions are:

$$
\begin{aligned}
& H_{A}=O \\
& V_{A}=+\frac{7}{15} P \\
& V_{B}=-\frac{7}{15} P
\end{aligned}
$$

(b) This needs to be done in parts since there is a point load (reaction) aleng the seam af $x=0$ and there is also a change in $g(x)$ of that point.
\rightarrow Lo, for $-L<0<x$:
There is coo loading in $x \Rightarrow f(x)=0$

$$
\begin{aligned}
q(x) & =q_{0}=\frac{2 p}{5 L} \\
\text { ce } & =\frac{d s}{d x}=\xi(x) \\
& \Rightarrow S(x)=\int q(x) d x=\int \frac{2 p}{5 L} d x \\
& \Rightarrow S(x)=\frac{2 P}{5 L} x+C
\end{aligned}
$$

Page 6 of 27
Use a boundary condition to get the constant of integration. At $x=-L\left({ }^{+}\right)$:

$$
\begin{gathered}
P^{D S(-L)^{+} \quad} \quad \delta_{0}: \Sigma F_{z}=0 \varphi_{+} \Rightarrow-P-S(-L)^{+}=0 \\
\Rightarrow S(-L)^{+}=-P
\end{gathered}
$$

using in the equation:

$$
\begin{gathered}
S(-c)^{+}=\frac{2 P}{5}(-L)+c_{1}=-P \\
\Rightarrow-\frac{2 P}{5}+c_{1}=-P
\end{gathered}
$$

sining: $C_{1}=-\frac{3}{5} P$
Fo: $\quad S(x)=\frac{P}{5}\left(2 \frac{x}{L}-3\right)$
Proceeding to the moment in.

$$
\begin{gathered}
\frac{d M}{d x}=\int \\
\Rightarrow M(x)=\int f(x) d x=\int \frac{1}{5}\left(2 \frac{x}{c}-3\right) d x \\
\text { So: } M(x)=\frac{2 P x^{2}}{10 L}-\frac{3 P x}{5}+C_{2}
\end{gathered}
$$

Aloin, use a bounty candixim. At the tip, $x=-L$, there is wo applied moment.

$$
\text { So: } M(-c)=0=\frac{2 P(-c)^{2}}{10 L}-\frac{3 p(-c)+C_{2}}{5}
$$

going to:

$$
\begin{aligned}
& \frac{P L}{5}+\frac{3 P L}{5}+C_{2}=0 \\
& \Rightarrow C_{2}=-\frac{4 P L}{5} \\
& \Rightarrow M(x)= \frac{P}{5}\left(\frac{x^{2}}{L}-3 x-4 L\right)
\end{aligned}
$$

Sumeraviziffor $-L<x<0$:

$$
\begin{aligned}
& f(x)=2 P / 5 L \\
& F(x)=0 \\
& S(x)=\frac{P}{5}\left(\frac{2 x}{L}-3\right) \\
& M(x)=\frac{P}{5}\left(\frac{x^{2}}{L}-3 x-4 L\right) \\
& \frac{P L}{5} \leqslant\left\{\left(\frac{x}{L}\right)^{2}-3\left(\frac{\pi}{L}\right)-4\right\}
\end{aligned}
$$

\rightarrow Move on to $0<x<3 L:$
There is still no loading in x, so $F(x)=0$

$$
g(x)=\frac{2 P}{5 c}\left(-\frac{x}{3 c}+1\right)
$$

use: $\frac{d s}{d x}=g(x)$

$$
\Rightarrow S(x)=\int \frac{2 P}{\sqrt{L}}\left(-\frac{x}{3 C}+1\right) d x
$$

gives:

$$
S(x)=\frac{2 P}{5 L}\left(-\frac{x^{2}}{6 C}+x\right)+C_{3}
$$

There are tho may r to gitaboundeng condition - - at the $x_{i p}$ or at the gin. The tip $(x-3 C)$ is easier or the only load is the reaction:

$$
\begin{aligned}
\Sigma F_{z}=0 \varphi_{+} & \Rightarrow S(3 L)^{-}-\frac{7}{15} P=0 \\
& \Rightarrow S(3 L)^{-}=\frac{7}{15} P
\end{aligned}
$$

So:

$$
\begin{aligned}
& S(3 L)^{-}=\frac{7}{15} P=\frac{2 P}{5 L}\left(-\frac{(3 C)^{2}}{6 C}+3 L\right)+C_{3} \\
& \frac{7}{15} P=\frac{2 P}{5 L}\left(-\frac{3}{2} L+3 L\right)+C_{3} \\
& \frac{7}{15} P=\frac{3}{5} P+C_{3} \\
& \text { Sun ally }=C_{3}=-\frac{2}{15} P
\end{aligned}
$$

yielding:

$$
f^{\prime} f(x)=\frac{2 P}{5}\left\{-\frac{1}{6}\left(\frac{x}{4}\right)^{2}+\left(\frac{x}{4}\right)-\frac{1}{3}\right\}
$$

Priced, again, to $\frac{d a}{d x}=S(x)$

$$
\Rightarrow a n(x)=\iint(x) d x=\frac{2 P}{5} \int\left\{-\frac{1}{6}\left(\frac{x}{c}\right)^{2}+\left(\frac{x}{c}\right)-\frac{1}{3}\right\} d x
$$

Page 9 of 27
firing:

$$
M(x)=\frac{\partial P}{5}\left\{-\frac{1}{18} \frac{x^{3}}{c^{2}}+\frac{x^{2}}{2 c}-\frac{1}{3} x\right\}+C_{4}
$$

Again, go ing th the tip $(x=3 L)$, there is no applied or reactionary moment. fo:

$$
\begin{aligned}
& M(3 L)^{-}=0 \\
\Rightarrow & 0=\frac{2 P}{5}\left\{-\frac{27}{18} L+\frac{9}{2} L-L\right\}+C_{4} \\
C_{4} & =-\frac{2 P}{5}(+2 L) \Rightarrow C_{4}=-\frac{4 P L}{5}
\end{aligned}
$$

Finally:

$$
M(x)=\frac{2 P}{5}\left\{-\frac{1}{18} \frac{x^{3}}{L^{2}}+\frac{x^{2}}{2 c}-\frac{1}{3} x-2<\right\}
$$

Summarizing: for $0<x<3 L$

$$
\begin{aligned}
G(x) & =\frac{2 P}{5 L}\left(-\frac{x}{3 L}+1\right) \\
F(x) & =0 \\
S(x) & =\frac{2 P}{5}\left\{-\frac{1}{6}\left(\frac{x}{L}\right)^{2}+\left(\frac{x}{L}\right)-\frac{1}{3}\right\} \\
M(x) & =\frac{2 P}{5}\left\{-\frac{1}{18} \frac{x^{3}}{L^{2}}+\frac{x^{2}}{2 c}-\frac{1}{3} x-2 L\right\} \\
& \frac{2 P C}{5}\left\{-\frac{1}{18}\left(\frac{x}{L}\right)^{3}+\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{1}{3}\left(\frac{x}{L}\right)-2\right\}
\end{aligned}
$$

\rightarrow NOTF: A woy to check -- There are wo point mun entr applied so the solnsimis for $m(x)$ for the tho segnents murtise equal where thery uneet $(x=0)$:

$$
\begin{aligned}
& \text { for: }-L<x<0 \text {, } 0<x<3 L \\
& M(x)=-4 p L / 5 \stackrel{?}{=}-4 p L / 5 \text { V } E \rho
\end{aligned}
$$

\rightarrow Now drow these. In skitching, use the relations of the devivaxuer to fet ashape. Calculeate endpointraluesto tegin. Audrecall that point eoadr cance egual jurps in shear (accountter proger direction and sigul.
$F(x)=0$ evenguhere no nend toprot
to next page...

Lou ling

(c) Gut the beamn...
\rightarrow fror $n+x=-4 / 2$:

$$
\begin{aligned}
& \Sigma F_{x}=0 \rightarrow F(-H / 2)=0 \\
& \Sigma F_{7}=0 p+\Rightarrow-p+q_{0}(4 / 2)-5(-1 / 2)=0
\end{aligned}
$$

with $q_{0}=\frac{2}{5} \frac{P}{L}$

$$
\Rightarrow S\left(-L_{2}\right)=-\frac{4}{5} P
$$

chect:
fruwly:

$$
\begin{aligned}
& \sum M_{\left(-L_{2}\right)}=O\left(y^{\prime} \Rightarrow P(L / 2)=\int_{-L}^{-4 / 2} q_{0}(L-|x|) d x+M(-4 /)=c\right. \\
& \Rightarrow \frac{P L}{2}-\left[q_{0} L x-\frac{q_{0}\left|x^{2}\right|}{2}\right]_{-L}^{-L / 2}+M(-4 / 2)=0 \\
& M C L / 2)=-\frac{P L}{2}+\left[q_{0} \frac{L^{2}}{2}-\frac{3 q_{0} L^{2}}{8}\right] \\
& \Rightarrow A\left(-Y_{2}\right)=-\frac{P L}{2}+\frac{2}{5} \frac{P}{L}\left(\frac{L^{2}}{\theta}\right)=-\frac{9}{20} P L
\end{aligned}
$$

cheek:

$$
\left.\begin{array}{rl}
M(x) & =\frac{P}{5}\left(\frac{x^{2}}{L}-3 x-4 c\right) \\
& \quad f x=-4 / 2 \\
& M(-4 / 2)
\end{array}\right)=\frac{P}{5}\left(\frac{L}{4}+\frac{3 L}{2}-4 L\right)
$$

\rightarrow Now cut the beam at $x=\frac{3 L}{2}$
Make it simpler by taking a negative
face cut:

$$
\begin{aligned}
& \Sigma F_{x}=0 \xrightarrow{\rightarrow} \Rightarrow F(3 / 2)=0 \\
& \sum F_{z}=0 \quad P_{+} \Rightarrow S\left(\frac{3 L}{2}\right)-\frac{7}{15} P+\int_{3 y_{2}}^{3 L} \frac{2 P}{5 L}\left(\frac{-x}{3 L}+1\right) d x=0 \\
& \left.\Rightarrow S\left(\frac{3 C}{2}\right)=\frac{7}{15} P+\frac{2 P}{5 L}\left(\frac{x^{2}}{B C}-x\right)\right]_{3 L / 2}^{3 L} \\
& =\frac{7}{15} P+\frac{2 P}{5 L}\left(\frac{q L^{2}-\frac{9}{4} L^{2}}{6 L}-(3 L-3 L / 2)\right)
\end{aligned}
$$

contiming:

$$
\begin{aligned}
& S\left(\frac{3 L}{2}\right)=\frac{7}{15} P+\frac{2 P}{5 L}\left(\frac{27}{24} L-\frac{3 L}{2}\right) \\
&=\frac{7}{15} P+\frac{2 P}{\sqrt{L}}\left(-\frac{3}{8} L\right) \\
&=\frac{28}{60} P-\frac{9 P}{60} \\
& \Rightarrow S\left(\frac{3 L}{2}\right)=\frac{19 P}{60}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cheek: } \begin{aligned}
& S(x)=\frac{2 P}{5}\left\{-\frac{1}{6}\left(\frac{x}{C}\right)^{2}+\left(\frac{x}{4}\right)-\frac{1}{3}\right\} \\
& \text { af } x=\frac{3 C}{2} \\
&\left(\frac{3 L}{2}\right)=\frac{2 P}{5}\left\{-\frac{9}{24}+\frac{3}{2}-\frac{1}{3}\right\} \\
&=\frac{2 P}{5}\left\{-\frac{9}{24}+\frac{36}{24}-\frac{8}{24}\right\} \\
& \Rightarrow S\left(\frac{3 L}{2}\right)=\frac{19}{60} p
\end{aligned} .
\end{aligned}
$$

Fnally:
witecut:

$$
M\left(\frac{3 L}{2}\right)=-\frac{7}{10} P L+\int_{3 U_{2}}^{3 C} \frac{2 P}{5 C}\left(-\frac{x}{3 L}+1\right)\left(x-\frac{3 L}{2}\right) d x
$$

Page 15 of 27

$$
\begin{aligned}
M\left(\frac{3 L}{2}\right) & =-\frac{7}{10} P L+\frac{2 P}{5 L} \int_{3 L / 2}^{3 L}\left(-\frac{x^{2}}{3 L}+\frac{3 x}{2}-\frac{3 L}{2}\right) d x \\
& =-\frac{7}{10} P L+\frac{2 P}{5 L}\left[-\frac{x^{3}}{9 L}+\frac{3 x^{2}}{4}-\frac{3 L x}{5}\right]_{34 / 2}^{3 L} \\
& =-\frac{7}{10} P L+\frac{2 P}{5 L}\left[-\frac{\left(27-\frac{27}{9}\right)}{9} L^{2}+\frac{3}{4}\left(9-\frac{9}{4}\right) L^{2}-\frac{9 L^{2}}{4}\right] \\
& =-\frac{7}{10} P L+\frac{2 P}{5 L}\left[-\frac{21}{8} L^{2}+\frac{81}{16} L^{2}-\frac{9 L^{2}}{4}\right] \\
& =-\frac{7}{10} P L+\frac{2}{5} P L\left[\frac{3}{16}\right] \\
\Rightarrow M\left(\frac{3 L}{2}\right) & =-\frac{28}{40} P L+\frac{3}{40} P L=-\frac{25}{40} P L=-\frac{5}{8} P C
\end{aligned}
$$

cheek:

$$
\begin{aligned}
& \text { Cheek: } \\
& M(x)=\frac{2 P C}{5}\left\{-\frac{1}{18}\left(\frac{x}{C}\right)^{3}+\frac{1}{2}\left(\frac{x}{C}\right)^{2}-\frac{1}{3}\left(\frac{x}{c}\right)-2\right\} \\
& \Rightarrow M\left(\frac{3 C}{2}\right)=\frac{2 P L}{5}\left\{-\frac{1}{18}\left(\frac{27}{8}\right)+\frac{1}{2}\left(\frac{9}{4}\right)-\frac{1}{3}\left(\frac{3}{2}\right)-2\right\} \\
&=\frac{2 P C}{5}\left\{-\frac{3}{16}+\frac{9}{8}-\frac{1}{2}-2\right\} \\
&=\frac{2 P L}{5}\left\{-\frac{3}{16}+\frac{18}{16}-\frac{8}{16}-\frac{32}{16}\right\} \\
&=\frac{2 R C}{5}\left\{-\frac{25}{16}\right\}
\end{aligned}
$$

$$
\Rightarrow M\left(\frac{3 C}{2}\right)=-\frac{5 P C}{8}
$$

$M>(M 4.2)$
(a) Note that this can biden irrespective of the usdel used.
consider the readend....
The model is the tree body diagram. (shountor Cause of cumatintaloy pen)

There are no reaction forcer since the ming how wo internal supporter that can carny load.

$$
\text { In local } \text { Ing ht: } \int_{p}(x)=P
$$

Further more, the lift must be syenmethic so that there is no net moment about the fuselage such tho the plane do es not roll.
(b) Now consider this cate by cate.
\rightarrow case 1.-lift constant alongspan.

$$
\Rightarrow \int_{p_{0}} d x=P \Rightarrow p_{0}=\frac{P}{L}=q(x)
$$

There are wo axial forces, so $F(x)=0$ we have two sections of the wing:

$$
\begin{aligned}
-L / 2 & <x<0 \\
0 & <x<c / 2
\end{aligned}
$$

There is syoumetry, so our result should be the tame, but lit is be feme:
for: $\frac{-1 / 2<x<0}{q(x)=p_{0}}$

$$
\text { use: } \frac{d s}{d x}=q(x) \Rightarrow s(x)=\int p_{0} d x
$$

Go to the x andre $S=0$ af $x=-4 / 2$

$$
\begin{gathered}
\Rightarrow S(-4 / 2)=0=\frac{P}{L}(-4 / 2)+c_{1} \\
\Rightarrow c_{1}=\frac{P}{2} \\
\Rightarrow S(x)=P\left(\frac{x}{L}+\frac{9}{2}\right)
\end{gathered}
$$

$$
\text { Progress to: } \begin{aligned}
& \frac{d M A}{d x}=S \\
\Rightarrow \mu(x) & =\int P\left(\frac{x}{c}+\frac{1}{2}\right) d x \\
= & P\left(\frac{x^{2}}{2 L}+\frac{x}{2}\right)+C_{2}
\end{aligned}
$$

Alcuin, af the tip: $M=0$ at $x=-4 / 2$

$$
\begin{aligned}
\text { So: } M(-c / 2)=0 & =P\left(\frac{L}{8}-\frac{L}{4}\right)+C_{2} \\
& \Rightarrow c_{2}=\frac{P L}{8}
\end{aligned}
$$

resulxingin: $M(x)=P L\left\{\frac{1}{2}\left(\frac{x}{L}\right)^{2}+\frac{1}{2}\left(\frac{x}{L}\right)+\frac{1}{8}\right\}$
Now fir: $0<x \ll / 2$
again $g(x)=p_{0}=\frac{P}{L}$

$$
\frac{d s}{d x}=q(x) \Rightarrow s(x)=\int \frac{p}{L} d x=\frac{P x}{c}+C_{3}
$$

a foin fo to the xp where $S=0$ (at $x=L / 2$)

$$
\begin{aligned}
& \Rightarrow S(L / 2)=0=\frac{P}{2}+C_{3} \Rightarrow C_{3}=-\frac{P}{2} \\
& \text { graving }: S(x)=P\left(\frac{x}{C}-\frac{1}{2}\right)
\end{aligned}
$$

Progress to: $\frac{d d}{d x}=\rho$

$$
\Rightarrow M(x)=\int p\left(\frac{x}{L}-\frac{1}{2}\right) d x
$$

PAL

$$
\text { finin: } \mu(x)=\frac{\rho_{x}^{2}}{2 L}-\frac{p}{2} x+c_{4}
$$

again tothe xip where there is no moment ($x=4 / 2$)

$$
\begin{aligned}
\Rightarrow M(L / 2)=0= & \frac{P L}{8}-\frac{P L}{4}+C_{4} \\
& \text { ging: }: C_{4}=\frac{P L}{8}
\end{aligned}
$$

gringathal exprestion:

$$
\begin{aligned}
& \text { a hal expres sich: } \\
& M(x)=P L\left\{\frac{1}{2}\left(\frac{x}{c}\right)^{2}-\frac{1}{2}\left(\frac{x}{c}\right)+\frac{1}{8}\right\}
\end{aligned}
$$

Summarizing for Case I

$$
\begin{aligned}
F(x) & =0 \quad \text { evengwhere } \\
S(x) & =P\left(\frac{x}{c}+\frac{1}{2}\right) \quad-L / 2<x<0 \\
& =P\left(\frac{x}{L}-\frac{1}{2}\right) \quad 0<x<4 / 2 \\
M(x) & =\frac{P C}{2}\left\{\left(\frac{x}{c}\right)^{2}+\left(\frac{x}{c}\right)+\frac{1}{4}\right\} \quad-4 / 2<x<0 \\
& =\frac{P c}{2}\left\{\left(\frac{x}{c}\right)^{2}-\left(\frac{x}{c}\right)+\frac{1}{4}\right\} \quad 0<x<L / 2
\end{aligned}
$$

NOTF: Considerthe symmety $-F(x)=0$ evenguhere, so satintied

- Changing $S(x)$ by P at the fuselage ($t P$ if process ding form $+x$ to $-x$) sid charging the sign of even powers of x
- Changing odd powers of x in the moment expression, on (x) in their sign

Thus, for susurequent cases, calculate for oneving ans use this symmecty.
\rightarrow Case 2 : lift linearvaiation alary span with maxionum value at root do un to halt this value at tip.
From last term:

$$
\begin{aligned}
& p(x)=p_{0}\left(1-\frac{x}{c}\right) \quad 0<x<L / 2 \\
&=p_{0}\left(1+\frac{x}{c}\right)-4 / 2<x<0 \\
& \text { and } \int_{p}(x)=P \Rightarrow p_{0} \int_{-1 / 2}^{0}\left(1+\frac{x}{2}\right) d x+p_{0} \int_{0}^{1 / 2} p_{0}\left(1-\frac{x}{c}\right) d x \\
&=P
\end{aligned}
$$

Page 21 of 27

$$
\begin{gathered}
\Rightarrow p_{0}\left[x+\frac{x^{2}}{2 L}\right]_{4 / 2}^{0}+p_{0}\left[x-\frac{x^{2}}{\partial L}\right]_{0}^{4_{2}}=P \\
p_{0}\left[\frac{L}{2}-\frac{L}{8}\right]+p_{0}\left[\frac{L}{2}-\frac{L}{8}\right]=P \\
\Rightarrow 2 p_{0}\left[\frac{3 L}{V}\right]=P \\
\Rightarrow p_{0}=\frac{4}{3} \frac{P}{L}
\end{gathered}
$$

Consider for $0<x<L / 2$

$$
\Rightarrow q(x)=\frac{4}{3} \frac{\rho}{L}\left(1-\frac{x}{L}\right)
$$

Procudingto $\frac{d f}{d x}=q(x) \Rightarrow f(x)=\int q(x)$

$$
\begin{aligned}
\Rightarrow S(x) & =\frac{4}{3} \frac{\rho}{c} \int\left(1-\frac{x}{c}\right) d x \\
& =\frac{4}{3} \frac{\rho}{c}\left(x-\frac{x^{2}}{2 L}\right)+C_{5}
\end{aligned}
$$

to thetis $\left(x=L_{2}\right)$ where $\rho=0$

$$
\begin{aligned}
\Rightarrow S(L / 2) & =0=\frac{4}{3} \frac{P}{L}\left(\frac{L}{2}-\frac{L}{8}\right)+C_{5} \\
\Rightarrow c_{5} & =-\frac{P}{3} \\
\Rightarrow S(x) & =\frac{4}{3} P\left\{\frac{x}{L}-\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{3}{8}\right\}
\end{aligned}
$$

Progressing to:

$$
\begin{aligned}
& y \text { to: } \frac{d M}{d x}=S \\
& =\frac{d}{3} \rho \int\left\{\frac{x}{L}-\frac{1}{2}\left(\frac{x}{c}\right)^{2}-\frac{3}{9}\right\} d x \\
& =\frac{d}{3} \rho\left\{\frac{x^{2}}{2 L}-\frac{x^{3}}{6 L^{2}}-\frac{3}{8} x+C_{6}\right\}
\end{aligned}
$$

$$
\Rightarrow M(x)=\frac{4}{3} \rho \int\left\{\frac{x}{4}-\frac{1}{2}\left(\frac{x}{4}\right)^{2}-\frac{3}{9}\right\} d x
$$

again at the tip $(x=4 / 2)$, the moment is genro:

$$
\begin{aligned}
M(c / 2)= & O=\frac{x^{2}}{8 L}-\frac{x^{3}}{48 c^{2}}+\frac{3 L}{16}+C_{6} \\
\Rightarrow & \angle\left(\frac{1}{8}-\frac{1}{48}-\frac{3}{16}\right)=-C_{6} \\
& \operatorname{ging} C_{6}=-L\left(\frac{8}{48}-\frac{1}{48}-\frac{9}{48}\right)=\frac{L}{12} \\
\Rightarrow M(x)= & \frac{4}{3} P L\left\{\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{1}{6}\left(\frac{x}{L}\right)^{3}-\frac{3}{8}\left(\frac{x}{L}\right)+\frac{1}{12}\right\}
\end{aligned}
$$

Summarizing for Case ${ }^{2}$

$$
\begin{aligned}
& F(x)=0 \text { evenguhere } \\
& S(x)=\frac{d}{3} P\left\{\frac{x}{L}-\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{3}{9}\right\} \quad 0<x<L / 2 \\
&=\frac{d}{3} P\left\{\frac{x}{L}+\frac{1}{2}\left(\frac{x}{L}\right)^{2}+\frac{3}{y}\right\}+P-L / 2<0<0 \\
& M(x)=\frac{d}{3} P L\left\{\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{1}{6}\left(\frac{x}{L}\right)^{3}-\frac{3}{8}\left(\frac{x}{L}\right)+\frac{1}{12}\right\} \\
&=\frac{d}{3} P L\left\{\frac{1}{2}\left(\frac{x}{L}\right)^{2}+\frac{1}{6}\left(\frac{x}{L}\right)^{3}+\frac{3}{\theta}\left(\frac{x}{c}\right)+\frac{1}{12}\right\} \\
&-4 / 2<x<0
\end{aligned}
$$

\rightarrow Case 3: liftgradratic along span with maximum at wot to zen at tip Pron last term:

$$
\begin{aligned}
& b_{p}^{4 / 2} \\
& p(x)=p_{0}\left(1-\frac{4 x^{2}}{L^{2}}\right)
\end{aligned}
$$

valid thengeghart
and $\rho p(x)=p$ or $\int_{0}^{L / 2} p(x)=\frac{p}{2}$

$$
\begin{gathered}
\Rightarrow p_{0}^{1} \int_{0}^{0 / 2}\left(1-\frac{4 x^{2}}{c^{2}}\right) d x=\frac{p}{2} \\
\left.p_{0}\left(x-\frac{4 x^{3}}{3 c^{2}}\right)\right]_{0}^{L / 2}=\frac{p}{2} \\
\Rightarrow p_{0}\left(L / 2-\frac{4 L^{3}}{2 d L^{2}}\right)=P / 2 \\
p_{0}(L / 3)=P / 2 \text { grin: } p_{0}=\frac{3 p}{2 L} \\
\delta_{0}: p(x)=\frac{3 p}{2 L}\left(1-\frac{4 x^{2}}{c^{2}}\right)=q(x)
\end{gathered}
$$

Page 24 of 27
Then with $\frac{d S}{d x}=\cdot q(x)$

$$
\begin{aligned}
\Rightarrow S(x) & =\frac{3 P}{2 L} \int\left(1-\frac{4 x^{2}}{c^{2}}\right) d x \\
& =\frac{3 P}{2 L}\left(x-\frac{4 x^{3}}{3 l^{2}}+C_{7}\right)
\end{aligned}
$$

to the $x p(x=4 / 2)$ for shear of zero:

$$
\begin{array}{r}
S(L / 2)=0 \Rightarrow \\
\quad \frac{L}{2}-\frac{4 L^{3}}{24 L^{2}}+C_{7}=0 \\
\Rightarrow \quad C_{7}=-\frac{L}{3}
\end{array}
$$

$\delta_{0}:$

$$
\rho(x)=\frac{3 P}{2}\left\{\frac{x}{L}-\frac{4}{3}\left(\frac{x}{L}\right)^{3}-\frac{1}{3}\right\}
$$

and then to: $\frac{d M}{d x}=S$

$$
\begin{aligned}
\Rightarrow M(x) & =\frac{3 P}{2} \int\left\{\frac{x}{L}-\frac{4}{3}\left(\frac{x}{L}\right)^{3}-\frac{1}{3}\right\} d x \\
& =\frac{3 P}{2}\left(\frac{x^{2}}{2 L}-\frac{4 x^{4}}{12 L^{3}}-\frac{1}{3} x+c_{8}\right)
\end{aligned}
$$

and to the $\operatorname{sip}(x=C / 2)$ where $M=0$:

$$
\begin{aligned}
M(E / 2)=O & =\left(\frac{L^{2}}{8 L}-\frac{4 c^{4}}{((8)(16 C)}-\frac{c}{6}+C_{8}\right) \\
& =\left(\frac{6 c}{48}-\frac{c}{48}-\frac{8 c}{48}+C_{8}\right) \\
\Rightarrow C_{8} & =\frac{c}{16}
\end{aligned}
$$

giving:

$$
M(x)=\frac{3 P L}{2}\left\{\left(\frac{x}{L}\right)^{2}-\frac{1}{3}\left(\frac{x}{L}\right)^{4}-\frac{1}{3}\left(\frac{x}{c}\right)+\frac{1}{16}\right\}
$$

Summoning for Cafe 3 :

$$
\begin{aligned}
F(x) & =0 \quad \text { evaguLere } \\
S(x) & =\frac{3 P}{2}\left\{\frac{x}{c}-\frac{d}{3}\left(\frac{x}{L}\right)^{3}-\frac{1}{3}\right\} \quad 0<x<L / 2 \\
& =\frac{3 P}{2}\left\{\frac{x}{L} * \frac{4}{3}\left(\frac{x}{L}\right)^{3}-\frac{1}{3}\right\}+P-4 / 2<x<0 \\
M(x) & =\frac{3 P L}{2}\left\{\left(\frac{x}{C}\right)^{2}-\frac{1}{3}\left(\frac{x}{C}\right)^{4}-\frac{1}{3}\left(\frac{x}{c}\right)+\frac{1}{16}\right\} \quad 0<x<L / 2 \\
& =\frac{3 P L}{2}\left\{\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{1}{3}\left(\frac{x}{C}\right)^{4}+\frac{1}{3}\left(\frac{x}{C}\right)+\frac{1}{16}\right\}-L / 2<x<0
\end{aligned}
$$

(c) Now compare via plotting.

NO 77: all valuer cure nomulized

- ($\frac{x}{C}$) for air divtoncar
- P forebear
- PC for moment

Axial circe -- jew evenguhere vi allcaser (no need ts plot)

Shear Force

NoTES: All us dele have the same value af the wot. Reason-- each wing cannier the some intefroted biff of halthew wight $(P / 2)$. Al now deb change by the concern orated weight, P, at the tuscloge
moment

NOTF: The moment at the not is waxiencew is a/lcarles, but varies a great dial in value. Tuns, the lift distritiouicu plays a considerable nell inturemoment carried by the beam.
(d) The highest moment is at the root, so that is the location of greatest locating as is shear for all carer. The load is taurterred at the aftachonent to the fuselage.

