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Unified Engineering Problem Set 3 Lectures: M7, M8
Week 4    Spring, 2009 Units: M4.3

M6 (M4.1)   (15 points)    A beam of total length 4L has a roller support at the far end
and is pinned at a distance L from the other end.  The beam is loaded by a
downward tip load of magnitude P at the near tip, by a constant distributed
upward loading of magnitude qo inboard to the pin support, and by a linearly-
varying distributed upward loading of magnitude q(x) that tapers to zero at
the roller support and reaches its peak value of qo at the pin support.  The
integrated load due to the distributed loadings, qo and q(x), along the beam is
equal in magnitude to the value of the load, P.

(a) Determine the reactions for this structural configuration.

(b) Using the relationships between loading, shear, and moment, determine
the loading, shear, and moment distributions.  Draw these diagrams.

(c) Check the obtained values for these parameters at the mid-point in each of
the two bays of the beam (i.e., @ x = - L/2, x = 3L/2).

M7 (M4.2)  (15 points)    Now that we have begun to learn about beams, we can use this
to build on the simple models of airplanes that we worked on in Week 5
(Problem Set 4) of last term when we modeled the lift distribution on a wing.
We first will further explore how wings carry load in level flight.

The wing of the airplane, as shown subsequently, can be modeled as a beam of
total span L which has no supports.  The beam has a concentrated load (the
weight of the fuselage1, its contents, and the empennage2) P at its center and a

                                                
1   The fuselage is that part of the airplane between the wings where the passengers and/or freight are

carried.
2   The empennage is more commonly known as the tail.
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distributed load (the lift of the wing minus its weight) along its span.  You learn
from Fluids that this distribution is often modeled as varying, with different
possible variations, along the span.  We examined two possible variations in
the Fall term problem.  We will add another, simpler one here (constant along
the span) so that we consider three::

(1)  constant along the span of the wing;

(2)  linear variation along the span of the wing with maximum value at the root
and with a value at the tip of half that at the root;  and

(3)  quadratic variation along the span of the wing (such that Lift = b - ax2) with
maximum value at the root and with a value of zero at the tip.

For simplicity, we ignore the weight of the wing in this work.  The model is
illustrated here for Case 1 (lift constant along the span).

L

FUSELAGEROOTTIP
L/2

P

Lift/length = p(x)
MODEL

L/2



Unified Engineering Problem Set 3 Lectures: M7, M8
Week #4     Spring, 2009 Units: M4.3

For each case, perform analysis for parts (a) and (b), expressing results in terms
of P, po , L, and the distance x from the root.

(a) Determine the reactions for the structural configuration.

(b) Determine the axial force, shear force, and bending moment as functions of
the distance from the root3 of the wing.

Subsequently, compare the results for the various lift models.  In order to do
this, it will be necessary to normalize the expressions.  Do this for distance from
the root by normalizing by L to get expressions in (x/L).  Expressions for
loading and loading resultants will need to be normalized using the “known”
values of length, L, and known weight, P.  This will be used with po to give
expressions in terms of [po(L)n/P] where the value of the exponent n on the
length, L, will depend upon the loading (resultant) being considered.  With this
established for each case, then:

(c) Directly compare the axial force, shear force, and bending moment as
functions of normalized distance from the root for the various models by
plotting each of these on a common plot.

(d) Using common sense arguments and the results from part (b), describe
where it is likely that the wing is most highly loaded for each case.

                                                
3   The root of the wing is the location where the wing is joined to the fuselage.
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(Add a short summary of the concepts you are using to solve the problem) 
 
Problem T6 

Consider the blading of a single-stage axial turbomachine shown below. What kind of 
machine (compressor or turbine) is represented by cases 1 and 2? What would happen in 
case 3? Draw the velocity vector diagrams and explain. 
 
 
 
 
 
 
 
 
 
 
 
Now consider the blading below. Would it be desirable to build a compressor stage 
according to this drawing? Why or why not? 
 



Unified Engineering Spring 2009
Fluids Problem 4

A symmetric airfoil has a trailing edge flap, with the hinge at xh/c = 0.8, with the flap set
at some small downward deflection angle δ.

δ
x

α
V

0 cxh

a) Define and sketch the camberline-slope dZ/dx, both versus x and versus θ.

b) Use Thin Airfoil Theory to determine the airfoil’s cℓ and cm,c/4, as functions of α and δ.
You may use either analytical or numerical integration for the necessary Fourier analysis.

c) Important quantities for an airplane designer are the angle of attack’s force derivatives,
and the flap’s control derivatives.
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The latter two indicate how much the cℓ and cm will change in response to a control deflection,
and thus ultimately determine how an airplane will respond to a control deflection.
Determine all four derivatives for the present flapped airfoil.
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Fluids Problem 5

Figure A shows a standard TAT problem for a 2D (infinitely-long 3D) wing. The freestream
speed is some known V

∞
at some known angle of attack α. Figure B shows the same

situation, except that the wing has been clipped to a span b, which results in the two semi-
infinite vortices trailing from the wingtips. The circulation about each tip vortex is the same
Γ as on the wing, in the directions shown for upward lift.
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effα    = ? w

Γ

a) Let’s assume that the chord is small, c ≪ b, so that the TAT “box” can be treated as one
point on the wing. Determine the vertical velocity w due to the two new tip vortices, at the
TAT box midway between the two tips.
Hint: You may find it helpful to do a brief look-ahead to lecture F6, although this is not
essential.

b) Determine the new effective freestream angle of attack αeff seen by the TAT problem in
B, as a result of the presence of the tip vortices.

c) Relate α and αeff in this case to the α2D and α3D angles you dealt with in Lab 2.


