(a) First determine an expression for the loading as a function of x:

$g(x)$

- Loading is linear, $w x$

 $\Rightarrow g(x) = w x + b$
• At \(x = 0 \), load \(q \) acts downward with magnitude \(q_0 \)
 \[
 \Rightarrow q(0) = -q_0
 \]
 Giving: \(-q_0 = m(0) + b \)
 \[
 \Rightarrow b = -q_0
 \]

• At \(x = L \), load \(q \) acts upward with magnitude \(q_0 \)
 \[
 \Rightarrow q(L) = +q_0
 \]
 Giving: \(+q_0 = m(L) + b \)
 and \(b = -q_0 \)
 \[
 \Rightarrow m = +\frac{2q_0}{L}
 \]
 \[
 \therefore q(x) = \frac{2q_0}{L}x - q_0 = q_0 \left(\frac{2x}{L} - 1 \right)
 \]

- Do a check... should cross over and equal 0 at midpoint \(x = \frac{L}{2} \)
 \[
 q \left(\frac{L}{2} \right) = 0 = q_0 \left(\frac{2}{2} - 1 \right) \checkmark \text{Yes}
 \]

- Move forward to ---.
Step 1 - Free Body Diagram

\[g(x) = \phi_0 \left(2 \frac{x}{L} - 1 \right) \]

\[\rightarrow \text{Apply Equilibrium to get reactions} \]

(Note: Value of \(g(x) \) accounts for direction of but loading so use \(g(x) \) generically as \(+ \) or \(- \) direction)

\[\sum F_x = 0 \implies H = 0 \]
\[\sum F_z = 0 \implies V + \int_0^L g(x) \, dx = 0 \]

Working:
\[V + \int_0^L \phi_0 \left(2 \frac{x}{L} - 1 \right) \, dx = 0 \]
\[V = -\phi_0 \left[\frac{x^2}{2} - x \right]_0^L \]
\[= -\phi_0 \left(\frac{L^2}{2} - L \right) = 0 \implies V = 0 \]

(makes sense since net force of \(g(x) \) loading is 0)

\[\sum M_0 = 0 \implies -M + \int_0^L g(x) x \, dx = 0 \]
Working:

\[M = \int_0^L p_o \left(2 \frac{x^2}{L} - x \right) \, dx \]

\[= \left[p_o \left(\frac{2x^3}{3L} - \frac{x^2}{2} \right) \right]^L_0 \]

\[= p_o \left[\frac{2L^3}{3L} - \frac{L^2}{2} \right] = \frac{p_o L^2}{6} \]

\[\Rightarrow M = \frac{p_o L^2}{6} \]

Step 2 - Work to get shear and moment results to:

\[\rightarrow \quad \text{use } \quad \frac{dS}{dx} = f(x) \quad \Rightarrow \quad S(x) = \int f(x) \, dx \]

Working:

\[S(x) = \int p_o \left(2 \frac{x}{L} - 1 \right) \, dx \]

\[= p_o \left(\frac{x^2}{L} - x \right) + C_1 \]

Clamped boundary condition:

@ \(x = 0 \), \(S = V \) (reaction force and no other point load)

\(V = 0 \Rightarrow S(0) = 0 \)

Gives: \(C_1 = 0 \)

Thus:

\[S(x) = p_o \left(\frac{x^2}{L} - x \right) \]
\[\text{Use } \frac{dM}{dx} = S(x) = M(x) = \int S(x) \, dx \]

\[\text{Working:} \]
\[M(x) = \int \rho_0 \left(\frac{x^2}{L} - x \right) \, dx \]
\[= \rho_0 \left(\frac{x^3}{3L} - \frac{x^2}{2} \right) + C_2 \]

- Use a boundary condition:
 \[@ x = 0, \quad M(x) = M \]
 \[\Rightarrow \quad \frac{\rho_0 L^2}{6} = C_2 \]

Thus:
\[M(x) = \rho_0 \left(\frac{x^3}{3L} - \frac{x^2}{2} + \frac{L^2}{6} \right) \]

Check: at the tip \((x = L)\) moment is zero:
\[M(L) = 0 = \rho_0 \left(\frac{L^3}{3L} - \frac{L^2}{2} + \frac{L^2}{6} \right) \]
\[= \frac{1}{3} - \frac{1}{2} + \frac{1}{6} \quad \checkmark \text{Yes} \]

\[\text{Step 3: Proceed to moment-displacement} \]
\[\text{(i.e. curvature) relationship} \]
\[M = EI \frac{d^2w}{dx^2} \]
\[\frac{d^2 w}{dx^2} = \frac{\phi_0}{E I} \left(\frac{x^3}{3 L} - \frac{x^2}{2} + \frac{L^2}{6} \right) \]

→ take an integral to fit slope \(\frac{dw}{dx} \):

\[\frac{dw}{dx} = \int \frac{\phi_0}{E I} \left(\frac{x^3}{3 L} - \frac{x^2}{2} + \frac{L^2}{6} \right) dx \]

\[= \frac{\phi_0}{E I} \left(\frac{x^4}{12 L} - \frac{x^3}{6} + \frac{L^2 x}{6} \right) + C_3 \]

→ take an integral to fit displacement \(w \):

\[w = \int \frac{\phi_0}{E I} \left(\frac{x^4}{12 L} - \frac{x^3}{6} + \frac{L^2 x}{6} \right) + C_3 \] \[\] \[dx \]

\[= \frac{\phi_0}{E I} \left(\frac{x^5}{60 L} - \frac{x^4}{24} + \frac{L^2 x^2}{12} \right) + C_3 x + C_4 \]

→ use two boundary conditions on displacement and/or slope to determine the two constants \(C_3 \) and \(C_4 \):

For a clamped boundary, displacement and slope are zero. So:

\(\circ \) \(x = 0, \frac{dw}{dx} = 0 \) \[\Rightarrow C_3 = 0 \]

\(\circ \) \(x > 0, w = 0 \) \[\Rightarrow C_4 = 0 \]
• Use these results and also normalize the dependence on x by the length of the beam, L: i.e. $(\frac{x}{L})$

\[
\begin{align*}
\phi : w(x) &= \frac{P_0 L^4}{EI} \left\{ \frac{1}{60} \left(\frac{x}{L} \right)^5 - \frac{1}{24} \left(\frac{x}{L} \right)^4 + \frac{1}{12} \left(\frac{x}{L} \right)^2 \right\} \\
\end{align*}
\]

Step 4: Check for the maximum (in magnitude)

Need to check at ends of configuration and within configuration.

• Check ends by calculating values there:

@ $x = 0$, $w = 0$ (as noted in boundary condition)

@ $x = L$, $w = \frac{P_0 L^4}{EI} \left\{ \frac{1}{60} - \frac{1}{24} + \frac{1}{12} \right\}$

\[= \frac{P_0 L^4}{EI} \left\{ \frac{2 - 5 + 10}{120} \right\} \]

\[\Rightarrow w(L) = \frac{7}{120} \frac{P_0 L^4}{EI} \]

• Check within structure by taking first derivative and set to zero within

\[0 < x < L: \]
\[
\frac{dw}{dx} = \frac{P_0 L^3}{EI} \left\{ \frac{1}{12} \frac{(x/L)^4}{L^4} - \frac{1}{6} \frac{(x/L)^3}{L^3} + \frac{1}{6} \frac{(x/L)}{L} \right\}
\]

This does not equal zero within
\[0 < x < L, \text{ only at } x = 0.\]

There:

\[
W_{\text{max}} = \frac{7}{120} \frac{P_0 L^4}{EI}
\]

at \[x = L\]

\[\text{(NOTE: Cantilevered beams generally have maximum deflection at tip except for very specific load configurations).}\]

Also check units:

\[
[L] = \frac{[F/L][L^4]}{[F/L][L^4]} = [L]^7 \checkmark \text{ OK}
\]

(6) To find the maximum magnitude of the axial stress, start with:

\[
\sigma_{xx} = -\frac{M_2}{I}
\]
- If and I do not vary in x, so look for the maximum magnitude of:

$$\frac{\sigma_{xx}}{(2/3)} = -M(x)$$

Earlier in, we found:

$$M(x) = \frac{2}{\rho_0 L^2} \left(\frac{x^3}{3} - \frac{x^2}{2} + \frac{L^2}{6} \right)$$

Normalizing:

$$M(x) = \frac{\rho_0 L^2 \left(\frac{1}{3} \left(\frac{x}{L} \right)^3 - \frac{1}{2} \left(\frac{x}{L} \right)^2 + \frac{1}{6} \right)}{\rho_0 L^2}$$

To find maximum magnitude, first evaluate values at end points:

$$M(0) = \frac{\rho_0 L^2}{6}$$

$$M(L) = 0$$

(As earlier noted)

Second check within $0 < x < L$ by taking derivative and setting to zero:

$$\frac{dM(x)}{dx} = \frac{\rho_0 L}{2} \left(\frac{(x/L)^2}{(x/L)} \right)$$

Its value is zero only at the ends ($x = 0, L$)

Thus, maximum magnitude of axial stress, σ_{xx}, occurs at $x = 0$:
Thus:

\[|\sigma_{xx,\text{max}}| = \frac{P_0 L^2}{6} \left(\frac{3}{4} \right) \]

at \(x = 0 \)

Again, check units:

\[
\begin{align*}
\left[\frac{F}{L^2} \right] & \overset{?}{=} \left[\frac{F}{L^2} \right] \left[L^2 \right] - \frac{[L]}{[L]^4} \\
& = \left[\frac{F}{L^2} \right] \checkmark \text{ Yes}
\end{align*}
\]

(c) To find the maximum magnitude of the shear stress, start with:

\[\sigma_{xz} = -\frac{5Q}{1b} \]

For the \(\sigma_{xx} \) case, \(Q, I, \) and \(b \) do not vary in \(x \), so look for the maximum magnitude of:

\[\frac{\sigma_{xx}}{(Q/1b)} = -S(x) \]
Earlier in (a) found:

\[S(x) = \psi_0 \left(\frac{x^2}{c^2} - x \right) \]

Normalization:

\[\int \psi_0 \left(\frac{x^2}{c^2} - x \right) dx = \psi_0 \int \left(\frac{x^2}{c^2} - \frac{x}{c} \right) dx \]

To find maximum magnitude, first evaluate values at end points:

\[S(0) = 0 \]
\[S(L) = \psi_0 L \left(1 - \frac{L}{c} \right) = 0 \]
(Casper Boundary Condition)

Second, check within \(0 < x < L\) by taking derivative and setting to zero:

\[\frac{dS(x)}{dx} = \psi_0 \left(2 \frac{x}{c} - 1 \right) \]

(Note: This is expression for \(g(x)\) as expected)

Setting to zero:

\[0 = \psi_0 \left(2 \frac{x}{c} - 1 \right) \]
\[\Rightarrow \frac{x}{c} = \frac{1}{2} \]
\[\Rightarrow x = \frac{L}{2} \]

Evaluate at this point:
\[S \left(\frac{y_2}{2} \right) = P_0 L \left\{ \frac{1}{4} - \frac{1}{2} \right\} = \frac{P_0 L}{4} \]

The maximum magnitude of shear stress \(\sigma_{x7} \) occurs at \(x = \frac{y_2}{2} \):

\[
|\sigma_{x7, \text{max}}| = \frac{P_0 L}{4} \left(\frac{Q}{16} \right)
\]

at \(x = \frac{y_2}{2} \).

Again, check units:

\[
\left[\frac{F}{L^2} \right] = \left[\frac{F}{L} \right] \left[\frac{L}{L^4} \right] = \left[\frac{L^3}{L^2} \right] \quad \text{Yes}
\]
Consider the wing configuration of M7 (M.5.2). The case of constant lift load is shown:

\[p(x) = \frac{q(x)}{L} = \frac{P}{L} \]

\[x = \text{distance from root} \]

Close the results for the internal load resultants determined in M7 (M.4.2) for each of the three load cases.

Summarize these from those results for one wing: \(0 < x < \frac{L}{2} \)

(Note: use subscript on expressions to indicate case)
Case 1:
\[q_1(x) = p_0 = \frac{P}{L} \]
\[F_1(x) = 0 \]
\[S_1(x) = P \left(\frac{x}{L} - \frac{1}{2} \right) \]
\[M_1(x) = \frac{PL}{2} \left\{ \left(\frac{x}{L} \right)^2 - \left(\frac{x}{L} \right) + \frac{1}{4} \right\} \]

Case 2:
\[q_2(x) = \frac{4P}{3L} \left(1 - \frac{x}{L} \right) \]
\[F_2(x) = 0 \]
\[S_2(x) = \frac{4P}{3} \left\{ \frac{1}{2} \left(\frac{x}{L} \right)^2 + \frac{x}{L} - \frac{3}{8} \right\} \]
\[M_2(x) = \frac{4}{3}PL \left\{ \frac{1}{6} \left(\frac{x}{L} \right)^3 + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{3}{8} \left(\frac{x}{L} \right) + \frac{1}{12} \right\} \]

Case 3:
\[q_3(x) = \frac{3P}{2L} \left(1 - 4 \left(\frac{x}{L} \right)^2 \right) \]
\[F_3(x) = 0 \]
\[S_3(x) = \frac{3P}{2} \left\{ -\frac{4}{3} \left(\frac{x}{L} \right)^3 + \left(\frac{x}{L} \right) - \frac{1}{3} \right\} \]
\[M_3(x) = \frac{3PL}{2} \left\{ -\frac{1}{3} \left(\frac{x}{L} \right)^4 + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{1}{3} \left(\frac{x}{L} \right) + \frac{1}{6} \right\} \]

Now proceed....
(a) The axial stress is related to the moment via:

\[\sigma_{xx} = \frac{-M(x)}{I} \]

This stress varies at any point \(x \) along the beam with distance from the axis \(z \).

The specifics of the cross-section are not given and terms \(z \) and \(I \) cannot be determined. However, it is given that the cross-sectional shape and properties (i.e., \(I \)) are constant along the beam. Thus \(z/I \) does not affect the distribution of \(\sigma_{xx} \) along \(x \), with the maximum stress occurring where \(z \) is a maximum value. Thus, the distribution of \(\sigma_{xx} \) with \(x \) is the same as \(M(x) \) with the value modified by \(-z/I \):

\[\frac{\sigma_{xx}(x)}{(-z/I)} = M(x) \]

Note that the moment is always positive, so the other will be negative (compressive) for \(+z \) and positive (tensile) for \(-z \). This is consistent for a beam that bends up.
The maximum moment occurs at the root in all cases. Thus:

$$\text{Maximum } |\sigma_{xx}| \text{ at } x = 0, \frac{1}{2}, \text{ maximum}$$

Consider the maximum values of the moment that occurs at the root:

$$M_{1,\text{max}} = \frac{PL}{8} = 0.125\, PL$$

$$M_{2,\text{max}} = \frac{PL}{2} = 0.111\, PL$$

$$M_{3,\text{max}} = \frac{3PL}{32} = 0.094\, PL$$

Plot is same as for $M(x)$ as in previous week with $M(x)$ being symmetric about the root i.e. $\sigma_{xx}(x)$ here:

\[
\sigma_{xx}(x) = \frac{-1}{x^2} \frac{(PL)}{x^2}
\]
As always do unit check:

\[
\frac{\sigma_{xx}}{(-\frac{dL}{dx})(PL)} \quad \text{is normalized?}
\]

\[
\frac{[F/L^2]}{[L]} = \frac{[F/L^2]}{[L]^2} \quad \checkmark \quad \text{yes}
\]

(b) The shear stress is related to the shear resultant via:

\[
\sigma_{xz} = -\frac{S(x)Q}{I_b}
\]

Again, the specific of the cross-section are not known, but they do not vary along the beam (i.e., \(S(x)\)). Thus, it can be said that \(\sigma_{xz}\) varies in \(x\) in the same way as \(S(x)\) and that the maximum \(\sigma_{xz}\) occurs where \(Q/I_b\) is a maximum. Thus, modify the distribution of \(\sigma_{xz}\) with \(x\) by

by \(-Q/I_b\).
\[
\frac{\sigma_{xz}(x)}{(- Q/1b)} = S(x)
\]
The maximum absolute value of the shear resultant \(|S(x)| \), occurs at the root in all cases and is the same value of \(P/2 \) in all cases. Thus

\[\text{Maximum } |\sigma_{xz}| \text{ at } x = 0, \quad \frac{Q}{6} \text{ maximum}\]

\[S_1_{\text{max}} = S_2_{\text{max}} = S_3_{\text{max}} = \frac{P}{2}\]

The plot is the same as for \(S(x) \) as in previous week with \(S(x) \) being asymmetric about the root -- negative for \(0 < x \), positive for \(x < 0 \).
Again, check units:

\[\frac{\sigma \times 7}{(- Q/1b)(F)} \] is normalized?

\[
\frac{[F/L^2]}{[L^3]/[L]} = \frac{[F/L^2]}{[F]/[L^2]}
\]

\[\checkmark \quad \text{Yes} \]

(c) The deflection of a beam, \(w \) is related to the moment \(M \) via:

\[EI \frac{d^2w}{dx^2} = M(x) \]

\(M(x) \) is symmetric in \(x \), so \(w(x) \) must be as well. Thus, integrate the various moment equations for \(x > 0 \) only and similar results accounting for sign change will occur for \(x < 0 \).

Also note that \(EI \) does not change, so the various cases can be factors in all cases.
In integrating twice, there will be a need for 2 Boundary Conditions. Refer the deflection to the attachment to the fuselage at the root. So:

\[@ x = 0, \ w = 0 \]

The other Boundary Condition comes from symmetry. Since the wing is continuous, it must have the same slope on each side of the fuselage (at \(x = 0 \)). Due to symmetry, the slope must thus be zero, so:

\[@ x = 0, \ \frac{dw}{dx} = 0 \]

→ Work for each case:

Case 1: \(\left(\frac{d^2w}{dx^2} \right)_1 = \frac{PL}{2EI} \left\{ \left(\frac{x}{L} \right)^2 - \left(\frac{x}{L} \right) + \frac{1}{4} \right\} \)

\[\Rightarrow \left(\frac{dw}{dx} \right)_1 = \frac{PL^2}{2EI} \left\{ \left(\frac{x}{L} \right)^3 - \frac{1}{2} \left(\frac{x}{L} \right)^2 + \frac{1}{4} \left(\frac{x}{L} \right) \right\} + C_1 \]

\[@ x = 0, \ \frac{dw}{dx} = 0 \Rightarrow C_1 = 0 \]

Progressing:

\[w_1 = \frac{PL^3}{2EI} \left\{ \frac{1}{12} \left(\frac{x}{L} \right)^4 - \frac{1}{6} \left(\frac{x}{L} \right)^3 + \frac{1}{8} \left(\frac{x}{L} \right)^2 \right\} + C_2 \]

\[@ x = 0, \ w = 0 \Rightarrow C_2 = 0 \]
Case 2: \(\left(\frac{d^2w}{dx^2} \right)_2 = \frac{4PL}{3EI} \left\{ -\frac{1}{6} \left(\frac{x}{L} \right)^3 + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{3}{8} \left(\frac{x}{L} \right) + \frac{1}{12} \right\} \)

\[\Rightarrow \left(\frac{dw}{dx} \right)_2 = \frac{4PL^2}{3EI} \left\{ -\frac{1}{24} \left(\frac{x}{L} \right)^4 + \frac{1}{6} \left(\frac{x}{L} \right)^3 - \frac{3}{16} \left(\frac{x}{L} \right)^2 + \frac{1}{12} \left(\frac{x}{L} \right) \right\} + C_3 \]

\(\Rightarrow x = 0, \frac{dw}{dx} = 0 \Rightarrow C_3 = 0 \)

Progressing:

\[w_2 = \frac{4PL^3}{3EI} \left\{ -\frac{1}{120} \left(\frac{x}{L} \right)^5 + \frac{1}{24} \left(\frac{x}{L} \right)^4 - \frac{1}{16} \left(\frac{x}{L} \right)^3 + \frac{1}{24} \left(\frac{x}{L} \right)^2 \right\} + C_4 \]

\(\Rightarrow x = 0, w = 0 \Rightarrow C_4 = 0 \)

Case 3: \(\left(\frac{d^2w}{dx^2} \right)_3 = \frac{3PL}{2EI} \left\{ -\frac{1}{3} \left(\frac{x}{L} \right)^4 + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{1}{3} \left(\frac{x}{L} \right) + \frac{1}{12} \right\} \)

\[\Rightarrow \left(\frac{dw}{dx} \right)_3 = \frac{3PL^2}{2EI} \left\{ -\frac{1}{15} \left(\frac{x}{L} \right)^5 + \frac{1}{6} \left(\frac{x}{L} \right)^3 - \frac{1}{6} \left(\frac{x}{L} \right)^2 + \frac{1}{16} \left(\frac{x}{L} \right) \right\} + C_5 \]

\(\Rightarrow x = 0, \frac{dw}{dx} = 0 \Rightarrow C_5 = 0 \)

Progressing:

\[w_3 = \frac{3PL^3}{2EI} \left\{ -\frac{1}{90} \left(\frac{x}{L} \right)^6 + \frac{1}{24} \left(\frac{x}{L} \right)^5 - \frac{1}{18} \left(\frac{x}{L} \right)^3 + \frac{1}{32} \left(\frac{x}{L} \right)^2 \right\} + C_6 \]

\(\Rightarrow x = 0, w = 0 \Rightarrow C_6 = 0 \)

The maximum value must occur at the tip in all cases \((x = L) \)
In all cases these are in terms of \(\frac{PL^3}{EI} \). Thus check units:

\[
[L] = \frac{[F]}{[F/L^2]} \frac{[L^3]}{[L^4]} = \frac{[L^3]}{[L^2]} = [L]
\]

Yes

So express in terms of these. Determine maximum \(w \) at \(x = 4/2 \):

\[
W_{\text{max}_1} = \frac{PL^3}{EI} \cdot \frac{1}{2} \left\{ \frac{1}{12} \left(\frac{1}{16} \right) - \frac{1}{6} \left(\frac{1}{8} \right) + \frac{1}{8} \left(\frac{1}{4} \right) \right\}
\]

\[
= \frac{PL^3}{EI} \cdot \frac{1}{2} \left\{ \frac{1}{192} - \frac{1}{48} + \frac{1}{32} \right\}
\]

\[
= \frac{PL^3}{EI} \cdot \frac{1}{2} \left\{ \frac{1 - 4 + 6}{192} \right\}
\]

\[
\Rightarrow W_{\text{max}_1} = \frac{PL^3}{EI} \left(\frac{3}{384} \right) = 0.00781 \frac{PL^3}{EI}
\]

\[
W_{\text{max}_2} = \frac{PL^3}{EI} \cdot \frac{4}{3} \left\{ -\frac{1}{120} \left(\frac{3}{2} \right) + \frac{1}{24} \left(\frac{1}{16} \right) - \frac{1}{16} \left(\frac{1}{8} \right) + \frac{1}{24} \left(\frac{1}{4} \right) \right\}
\]

\[
= \frac{PL^3}{EI} \cdot \frac{1}{24} \left\{ -\frac{1}{120} + \frac{1}{12} - \frac{1}{4} + \frac{1}{3} \right\}
\]

\[
= \frac{PL^3}{EI} \cdot \frac{1}{24} \left\{ \frac{-1 + 10 - 30 + 40}{120} \right\}
\]

\[
\Rightarrow W_{\text{max}_2} = \frac{PL^3}{EI} \left(\frac{19}{2880} \right) = 0.00660 \frac{PL^3}{EI}
\]
\[W_{max_3} = \frac{PL^3}{EI} \cdot \frac{3}{2} \left\{ -\frac{1}{90} (\frac{1}{64}) + \frac{1}{24} (\frac{1}{16}) - \frac{1}{16} (\frac{1}{8}) + \frac{1}{32} (\frac{1}{4}) \right\} \]

\[= \frac{PL^3}{EI} \cdot \frac{3}{32} \left\{ -\frac{1}{90} (\frac{1}{4}) + \frac{1}{24} - \frac{1}{9} + \frac{1}{2} (\frac{1}{4}) \right\} \]

\[= \frac{PL^3}{EI} \cdot \frac{3}{32} \left\{ -\frac{1}{360} + \frac{1}{24} - \frac{1}{9} + \frac{1}{8} \right\} \]

\[= \frac{PL^3}{EI} \cdot \frac{3}{32} \left\{ \frac{1+15-40+45}{360} \right\} \]

\[= \frac{PL^3}{EI} \left(\frac{19}{3840} \right) = 0.00495 \frac{PL^3}{EI} \]

Summary:

\[W_{max_1} = 0.00781 \frac{PL^3}{EI} \]
\[W_{max_2} = 0.00660 \frac{PL^3}{EI} \]
\[W_{max_3} = 0.00495 \frac{PL^3}{EI} \]

Proceed to a plot of approximate sketches.