

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

16.003/16.003 Unified Engineering III, IV Spring 2009

Problem Set 6

Name: _____

Due Date: 3/20/2009

	Time Spent (min)
T12	
T13-14	
S1	
Study Time	

Announcements:

Unified Engineering Thermodynamics & Propulsion

(Add a short summary of the concepts you are using to solve the problem)

Problem T12

Consider the following Rankine cycles. Steam at 20 bar, 360°C is expanded in a steam turbine to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler.

- a) Assuming ideal processes, sketch the cycle in a T-s diagram and find the net work and the cycle efficiency per kg of steam.
- b) If the turbine and the pump each have 80% efficiency, find the percentage reduction in the net work and cycle efficiency. Sketch the non-ideal cycle in the same T-s diagram.

Unified Engineering						
Thermodynamics & Propulsion						

Spring 2009 Z. S. Spakovszky

(Add a short summary of the concepts you are using to solve the problem)

Problem T13 - T14

One method of producing liquid nitrogen is to use the system shown below. Nitrogen gas at a pressure of 100 bar and a temperature of 300 K flows at a rate of 10 m³/min (measured at 1 bar) through the heat exchanger, thereby decreasing in temperature. As it flows through the Joule-Thomson valve, its pressure is reduced from 100 bar to 1 bar and in the process some liquid is formed. The gas which is not liquefied, but has a reduced temperature, flows out through the counter-flow heat exchanger. The temperature of this discharge stream is 297 K. Assume that the heat exchange is externally adiabatic.

- a) Sketch the process in a T-s diagram and label all states.
- b) Find the mass flow into the heat exchanger.
- c) Determine the heat transferred in the heat exchanger.
- d) Determine the rate at which liquid nitrogen is delivered by this system.
- e) Sketch the temperature difference in the heat exchanger versus the temperature of the low-pressure stream. Is the heat transfer process in the heat exchanger reversible? Why or why not? (No calculation is needed here, an explanation in a few sentences is expected)

Temp.	Press.		Specif	icVolume, m	/kg	In	ternal En	ergy, kJ/k	9	
		a se attis das stratera en alabras esta activada				Internal Energy, kJ/kg				
к Т	kPa P		aquia 7	Evap.	Sat. Vapor	Sat. Liquio	d Evap. " _{fr}		at. Vapo N _x	
63.1	12.5	0.00	1150	1.48074	1.48189	-150.92	Para serve Q	.86	45.94	
65	17.4		1160	1.09231	1.09347	-147.19	190.30		47.17	
70	38.6		1191	0.52513	0.52632	-137.13 187.54			50.40	
75	76.1			0.28052	0.28174	-127.04			53.43	
77.3	101.3	0.001223 0.001240		0.21515	0.21639	-127.04	180.47 177.04		54.76	
80	137.0	0.001240		0.16249	0.16375				56.20	
85	229.1	0.001259		0.10018 0.10148		-116.86 173.0 -106.55 165.2			58.65	
90	360.8			0.06477	0.06611	-96.06	156.76		60.70	
95	541.1	0.001343 0.001393		0.04337	0.04476	-90.00	156.76		62.25	
100	779.2		1452	0.02975	0.03120	-74.33				
105	1084.6						137		63.17	
110	1467.6		1522	0.02066	0.02218	-62.89	126		63.29	
115	1939.3		1610 1729	0.01434	0.01595	-50.81	113		62.31	
115				0.00971	0.01144	-37.66		.36	59.70	
120	2513.0 3208.0		1915	0.00608	0.00799	-22.42		.63	54.21	
125			2355 3194	0.00254	0.00490	-0.83		.73	39.90	
	3397.8 3.6.2 SI Sup			0	0.00319	18.94	0		18.94	
			mogen						<u></u>	
Femp. K	ν m³/kg	h kJ/kg	s kJ/kg K	m ³ /kg	h kJ/kg	s kJ/kg K	v m³/kg	A kJ/kg	s kJ/kg I	
	10	0 kPa (77.24)		200 kPa (83.62) 500 kPa (h k Pa (93.9	181	
Sat.	0.21903	76.61	5.4059	0.11520	81.05	5.2673	0.04834	86.15	5.080	
100	0.29103	101.94	5.6944	0.14252		5.4775	0.05306	94.46	5.166	
120	0.35208	123.15	5.8878	0.17397		5.6753	0.06701	118.12	5.382	
140	0.41253	144.20	6.0501	0.20476	143.28	5.8399	0.08007	140.44	5.554	
160	0.47263	165.17	6.1901	0.23519	164.44	5.9812	0.09272	162.22	5.699	
180	0.53254	186.09	6.3132	0.26542	185.49	6.1052	0.10515	183.70	5.826	
200	0.59231	206.97	6.4232	0.29551	206.48	6.2157	0.11744	205.00	5.938	
220	0.65199	227.83	6.5227	0.32552	227.41	6.3155	0.12964	226.18	6.0392	
240	0.71161	248.67	6.6133	0.35546	248.32	6.4064	0.14177	247.27	6.1310	
260	0.77118	269.51	6.6967	0.38535	269.21	6.4900	0.15385	268.31	6.2152	
280	0.83072	290.33	6.7739	0.41520	290.08	6.5674	0.16590	289.31	6.2930	
TABLE	B.6.1 SI (Co	ntinued) S	Saturated N	litrogen	estil descelation	weit, (David)a	60) 18 S ₂ A	A SÍRA		
Temp.	Press.	Enthalpy, kJ/kg				Entropy, kJ/kg K				
к T	kPa P	Sat. Li		Evap. : h _{ft}	Sat. Vapor h _s	Sat. Liquid	Eva s _{ja}		at. Vapo s _z	
	10.0			A CONTRACTOR	A 1 2 4 1 2 4 4			20.00	4 9242	
63.1	12.5	-150		215.39	64.48	2.4234		109	5.8343	
65	17.4	-147		213.38	66.21	2.4816	3.2828 2.9684		5.7645	
70	38.6	-131		207.79	70.70	2.6307			5.5991	
75	76.1	-126.95		201.82	74.87	2.7700		909	5.4609	
77.3	101.3	-122.15				2.8326	2.5707		5.4033	
80	137.0	-116		195.32	78.63	2.9014		415	5.3429	
85	229.1	-106		188.15	81.90	3.0266		135	5.2401	
90	360.8			180.13 84.55		3.1466			5.1480	
95	541.1			171.07	86.47	3.2627		007	5.0634	
100	779.2	-7.	3.20	160.68	87.48	3.3761		068	4.9829	
105	1084.6	-6	1.24	148.59	87.35	3,4883	1.4	151	4.9034	
110	1467.6	-43	8.45	134.15	85.71	3.6017	1.2	196	4.8213	
115	1939.3	-3-	4.31	116.19	81.88	3.7204	1.0	104	4.730	
120	2513.0	-1'	7.61	91.91	74.30	3.8536	0.7	659	4.6195	
125	3208.0		6.73	48.88	55.60	4.0399	0.3	910	4.4309	
	3397.8	29.79		0 29.79		4 2102	4.2193 0		4.2193	

Thermodynamic Properties of Nitrogen

Temp. K	у m³/kg	h kJ/kg	s kJ/kg K	ν m ³ /kg	h kJ/kg	s kJ/kg K	ν m³/kg	h kJ/kg	s kJ/kg N	
48.185	100 kPa (77.24)			20	0 kPa (83.6		500 kPa (93.98)			
300	0.89023	311.16	6.8457	0.44503	310.94	6.6393	0.17792	310.28	6.3653	
350	1.03891	363.24	7.0063	0.51952	363.09	6.8001	0.20788	362.63	6.5267	
400	1.18752	415.41	7.1456	0.59392	415.31	6.9396	0.23777	414.99	6.6666	
450	1.33607	467.77	7.2690	0.66827	467.70	7.0630	0.26759	467.49	6.7902	
500	1.48458	520.41	7.3799	0.74258	520.37	7.1740	0.29739	520.24	6.9014	
600	1.78154	626.94	7.5741	0.89114	626.94	7.3682	0.35691	626.93	7.095	
700	2.07845	735.58	7.7415	1.03965	735.61	7.5357	0.41637	735.68		
800	2.37532	846.60	7.8897	1.18812	846.64	7.6839	0.47581	846.78		
900	2.67217	960.01	8.0232	1.33657	960.07	7.8175	0.53522	960.24	7.545	
1000	2.96900	1075.68	8.1451	1.48501	1075.75	7.9393	0.59462	1075.96		
TABLE	B.6.2 SI (Co	ntinued) S	uperheated N	litrogen	particia haina	taurd) (Sabits	h.1 St. (Con	iesting	1.3	
Temp. v h s			v	h	\$	v	h	8		
K	m³/kg	kJ/kg	kJ/kg K	m³/kg	kJ/kg	kJ/kg K	m3/kg	kJ/kg	kJ/kg K	
h.	1 Sec	Sec. 1	h, blogi	Frapi	Set Vapo		હ્યું નુદેશ	e 1 1		
600 kPa (96.37)					kPa (100.3		1000 kPa (103.73)			
Sat.	0.04046	86.85	5.0411	0.03038	87.52	4.9768	0.02416	87.51	4.9237	
120	0.05510	116.79	5.3204	0.04017	114.02	5.2191	0.03117	111.08	5.1357	
140	0.06620	139.47	5.4953	0.04886	137.50	5.4002	0.03845	135.47	5.3239	
160 180	0.07689 0.08734	161.47 183.10	5.6422	0.05710	159.95	5.5501 5.6793	0.04522	158.42	5.4772 5.6082	
200	0.08754	204.50	5.7696 5.8823	0.06509 0.07293	181.89 203.51	5.7933	0.05173 0.05809	180.67 202.52	5.7234	
220	0.10788	225.76	5.9837	0.08067	203.31	5.8954	0.05809	224.11	5.8263	
240	0.11803	246.92	6.0757	0.08835	246.23	5.9880	0.07055	245.53	5.9194	
260	0.12813	268.01	6.1601	0.09599	267.42	6.0728	0.07670	266.83	6.0047	
280	0.13820	289.05	6.2381	0.10358	288.54	6.1511	0.08281	288.04	6.0833	
300	0.14824	310.06	6.3105	0.11115	309.62	6.2238	0.08889	309.18	6.1562	
350	0.17326	362.48	6.4722	0.12998	362.17	6.3858	0.10401	361.87	6.3187	
400	0.19819	414.89	6.6121	0.14873	414.68	6.5260	0.11905	414.47	6.4591	
450	0.22308	467.42	6.7359	0.16743	467.28	6.6500	0.13404	467.15	6.5832	
500	0.24792	520.20	6.8471	0.18609	520.12	6.7613	0.14899	520.04	6.6947	
600	0.29755	626.93	7.0416	0.22335	626.93	6.9560	0.17883	626.92	6.8895	
700	0.34712	735.70	7.2093	0.26056	735.76	7.1237	0.20862	735.81	7.0573	
800	0.39666	846.82	7.3576	0.29773	846.91	7.2721	0.23837	847.00	7.2057	
900	0.44618	960.30	7.4912	0.33488	960.42	7.4058	0.26810	960.54	7.3394	
1000	0.49568	1076.02	7.6131	0.37202	1076.16	7.5277	0.29782	1076.30	7.4614	
	1500 kPa (110.38)			200) kPa (115.	58)	3000 kPa (123.61)			
Sat.	0.01555	85.51	4.8148	0.01100	81.25		0.00582	63.47		
120	0.01899	102.75	4.9650	0.01260	92.10	4.8116	-	· _ ·		
140	0.02452	130.15	5.1767	0.01752	124.40	5.0618	0.01038	111.13	4.8706	
160	0.02937	154.50	5.3394	0.02144	150.43	5.2358	0.01350	141.85	5.0763	
180	0.03393	177.60	5.4755	0.02503	174.48	5.3775	0.01614	168.09	5.2310	
200	0.03832	200.03	5.5937	0.02844	197.53	5.4989	0.01857	192.49	5.3596	
220	0.04260	222.05	5.6987	0.03174	219.99	5.6060	0.02088	215.88	5.4711	
240	0.04682	243.80	5.7933	0.03496	242.08	5.7021	0.02312	238.66	5.5702	
260	0.05099	265.36	5.8796	0.03814	263.90	5.7894	0.02531	261.02	5.6597	
280	0.05512	286.78	5.9590	0.04128	285.53	5.8696	0.02746	283.09	5.7414	
300	0.05922	308.10	6.0325	0.04440	307.03	5.9438	0.02958	304.94	5.8168	
350	0.06940	361.13	6.1960	0.05209	360.39	6.1083	0.03480	358.96	5.9834	
400	0.07949	413.96	6.3371	0.05971	413.47	6.2500	0.03993	412.50	6.1264	
450	0.08953	466.82	6.4616	0.06727	466.49	6.3750	0.04502	465.87	6.2521	
500	0.09953	519.84	6.5733	0.07480	519.65	6.4870	0.05008	519.29	6.3647	
600 700	0.11948	626.92	6.7685	0.08980	626.93	6.6825	0.06013	626.95	6.5609	
800	0.13937	735.94	6.9365	0.10474	736.07	6.8507	0.07012	736.35	6.7295	
900	0.15923	847.22	7.0851	0.11965	847.45	6.9994	0.08008	847.92	6.8785	
900	0.17906	960.83	7.2189	0.13454	961.13	7.1333	0.09003 0.09996	961.73	7.0125	

Temp. K	ν m³/kg	h kJ/kg	s kJ/kg K	۳ m³/kg	h kJ/kg	s kJ/kg K	ν m ³ /kg	h kJ/kg	s kJ/kg K	
	6000 kPa			4	8000 kPa	Lange Strate	10000 kPa			
140	0.002941	47,44	4.2926	0.002224	27.78	4.1167	0.002003	20.87	4.0373	
160	0.005556	112.16	4.7292	0.003748	91.80	4.5453	0.002908	76.52	4.4088	
180	0.007309	148.02	4.9411	0.005193	134.69	4.7988	0.004021	122.65	4.6813	
200	0.008771	177.29	5.0955	0.006387	167.47	4.9717	0.005014	158.35	4.8697	
220	0.010095	203,77	5.2217	0.007449	196.07	5.1082	0.005902	188.88	5.0153	
240	0.011337	228.73	5.3303	0.008433	222.48	5.2231	0.006721	216.64	5.1362	
260	0.012526	252.73	5.4264	0.009367	247.55	5.3235	0.007495	242.72	5.2406	
280	0.013678	276.09	5.5130	0.010264	271.74	5.4131	0.008235	267.69	5.3331	
300	0.014803	298.99	5.5920	0.011135	295.32	5.4945	0.008952	291.90	5.4167	
350	0.017532	354.95	5.7646	0.013236	352.51	5.6709	0.010670	350.26	5.5967	
400	0.020187	409.83	5.9111	0.015264	408.24	5.8197	0.012320	406.79	5.7477	
450	0.022794	464.19	6.0392	0.017248	463.22	5.9492	0.013927	462.36	5.8786	
500	0.025370	518.37	6.1534	0.019202	517.88	6.0644	0.015507	517.48	5.9948	
600	0.030463	627.12	6.3516	0.023053	627.32	6.2639	0.018611	627.58	6.1955	
700	0.035506	737.27	6.5214	0.026856	737.94	6.4344	0.021669	738.65	6.3667	
800	0.040519	849.37	6.6710	0.030631	850.38	6.5845	0.024700	851.43	6.5172	
900	0.045514	963.59	6.8055	0.034388	964.86	6.7194	0.027714	966.15	6.6523	
1000	0.050495	1079.88	6.9281	0.038132	1081.35	6.8421	0.030715	1082.84	6.7753	
	15000 kPa				20000 kPa		50000 kPa			
140	0.001770	14.81	3.9273	0.001655	13.75	3.8587	0.001391	28.05	3.6405	
160	0.002183	59.14	4.2232	0.001929	53.63	4.1250	0.001497	61.62	3.8647	
180	0.002749	102.34	4.4778	0.002281	93.02	4.3570	0.001612	94.31	4.0573	
200	0.003365	140.60	4.6796	0.002687	130.17	4.5529	0.001736	126.15	4.2250	
220	0.003964	174.10	4.8394	0.003108	164.26	4.7154	0.001867	157.12	4.3726	
240	0.004531	204.33	4.9710	0.003525	195.59	4.8518	0.002003	187.24	4.5037	
260	0.005071	232.41	5.0834	0.003930	224.82	4.9689	0.002143	216.53	4.6209	
280	0.005589	259.01	5.1820	0.004323	252.50	5.0714	0.002285	245.02	4.7266	
300	0.006088	284.56	5.2702	0.004704	279.01	5.1629	0.002428	272.78	4.8223	
350	0.007280	345.47	5.4581	0.005617	341.86	5.3568	0.002786	339.44	5.0280	
400	0.008416	403.79	5.6139	0.006487	401.65	5.5166	0.003138	403.08	5.1980	
450	0.009517	460.71	5.7480	0.007329	459.70	5.6534	0.003484	464.64	5.3431	
500	0.010593	516.88	5.8664	0.008149	516.78	5.7737	0.003823	524.82	5.4699	
600	0.012697	628.50	6.0699	0.009748	629.76	5.9797	0.004484	642.94	5.6853	
700	0.014759	740.63	6.2427	0.011310	742.85	6.1540	0.005129	760.04	5.8658	
800	0.016797	854.18	6.3943	0.012849	857.11	6.3065	0.005762	877.47	6.0226	
900	0.018818	969.50	6.5301	0.014374	972.98	6.4430	0.006385	995.87	6.1621	
1000	0.020828	1086.64	6.6535	0.015887	1090.55	6.5668	0.007001	1115.51	6.2881	

Signals and Systems 1:

Please do problems 1.21, 1.22, 1.25, and 1.26 from Oppenheim and Willsky.