UNIFIED ENGINEERING I, II, III, IV 16.001/16.002/16.003/16.004 2007-2008

SAMPLE PROBLEM AND SOLUTIONS

Problem 1.1A (Mechanics of Physics)

A rocket is projected vertically upward and achieves a burnout at time equal to zero. It reaches a height above burnout equal to h at time t_1 going up and t_2 going down. Determine h and the speed v_o at burnout.

SOLUTION

Paul Lagace

Problem 1.1 A

September 6, 2007

Given facts:

- burnout at time = 0 and velocity = v_o
- at time = t₁, height above burnout equals h on way up
- at time = t₂, height above burnout equals h on way down
- Air drag can be neglected

Other knowns:

- Force due to gravity (in negative direction)
- dv/dt = a a = acceleration
- v = velocity
- dz/dt = v z = height

Problem asks for:

 $h = height above burnout at defined times t_1 and t_2$

v_o = velocity at burnout

Draw sketch to help view problem:

Define:

 $h_b = height at burnout$

Approach:

→ Begin with general velocity-acceleration relationship:

dv(t)/dt = a(t)

Here a(t) = -g (only the gravity)

Now integrate to get:

$$v(t) = \int a(t) dt$$
$$= -\int g dt$$
$$= -gt + C_1$$

We know that at burnout: t = 0, $v = v_o$

$$\Rightarrow v_{o} = C_{1}$$

giving: $v(t) = -gt + v_{o}$ (1)

→ Now use this in the height (distance)-velocity relationship:

 $dz(t)/dt = v(t) = -gt + v_{o}$

and integrating this to get:

$$z(t) = \int v(t) dt = -\int gt dt + \int v_o dt$$

= -1/2 gt² + v_ot + C₂

We have defined the height at burnout to be h_b (with t = 0). Thus:

 $h_b = C_2$ giving: $z(t) = h(t) = -1/2 gt^2 + v_o t + h_b$ (2)

Now we use the given facts relating defined times and height/distance above burnout. Use these in the derived equation (2).

First: at
$$t = t_1$$
, $z(t) = h + h_b$
So: $h + h_b = -1/2 g t_1^2 + v_o t_1 + h_b$
giving: $h = v_o t_1 - 1/2 g t_1^2$ (3)
Second: at $t = t_2$, $z(t) = h + h_b$
So: $h + h_b = -1/2 g t_2^2 + v_o t_2 + h_b$
giving: $h = v_o t_2 - 1/2 g t_2^2$ (4)

Now equate the resulting equations (3) and (4) to get:

$$h = v_o t_1 - 1/2 g t_1^2 = v_o t_2 - 1/2 g t_2^2$$
(3)

 \rightarrow Solve for v_o as asked for by the problem:

$$v_{o}(t_{2}-t_{1}) = 1/2 g(t_{2}^{2}-t_{1}^{2})$$

$$\Rightarrow v_{o} = [1/2 g(t_{2}+t_{1})(t_{2}-t_{1})] / (t_{2}-t_{1})$$
Finally:
$$v_{o} = 1/2 g(t_{1}+t_{2})$$

check via units:

$$[L / T] = [L / T^2] [T] \quad \checkmark$$

- Continue using these facts and the derived relationship for height/distance above burnout at the defined times.
 - \underline{Now} use the steps resulting in equations (3) and (4) and the solution for $v_{\rm o}$ in these equations.

In (3):
$$h = v_0 t_1 - 1/2 g t_1^2$$

 $\implies h = 1/2 g (t_1 + t_2) t_1 - 1/2 g t_1^2$
expanding:
 $h = 1/2 g t_1^2 + 1/2 g t_1 t_2 - 1/2 g t_1^2$
 $\implies h = 1/2 g t_1 t_2$

Check by doing this.....

In (4):
$$h = v_0 t_2 - 1/2 g t_2^2$$

 $\implies h = 1/2 g (t_1 + t_2) t_2 - 1/2 g t_2^2$
expanding:

$$h = 1/2 g t_1 t_2 + 1/2 g t_2^2 - 1/2 g t_2^2$$
$$\implies h = 1/2 g t_1 t_2$$

Same as from (3). So height above burnout, h, asked for in problem is:

$$h = 1/2 g t_1 t_2$$

final check via units:

$$[L] = [L / T^2] [T] [T]$$