

Unified Engineering	Name:
Thermo Quiz 2	Spring 2009

Consider the adiabatic axial turbine stage shown below. The turbine is supplied with air at $T_{t0} = 300$ K and $p_{t0} = 2$ bar. Due to viscous dissipation, the entropy change across the stator is $\Delta s_{stator}/R = 0.1$. The rotor is ideal and provides $w_s = 50,000$ J/kg of specific shaft work. The axial velocity is constant throughout such that $c_{x0} = c_{x1} = c_{x2} = 50$ m/s. The flow into the stator is axial, $c_0 = c_{x0}$, and leaves the rotor with no absolute swirl, $c_2 = c_{x2}$. The mean radius, r = 0.3m, is constant through the stage. The rotor trailing edge blade metal angle is known to be $\beta_2 = 60$ degrees and air can be modeled as an ideal gas with constant specific heats $\gamma = 1.4$ and R = 287 J/kg-K.

- a) What is the stagnation temperature at rotor inlet, T_{tl} ?
- b) What is the stagnation pressure at rotor inlet, p_{tl} ?
- c) Based on the above drawing, sketch the velocity triangles, for station 1 and 2.
- d) What is the rotor angular velocity, Ω , in rad/s?
- e) Determine the stator trailing edge angle α_1 and stator exit velocity c_1 .
- f) Sketch an *h*-*s* diagram for the processes from station 0 all the way to station 2 and indicate static and stagnation states.
- g) What is the rotor exit stagnation pressure, p_{t2} ?
- h) Determine the adiabatic efficiency of the turbine stage, η_T .