Lab 2 – Wind Tunnel Testing a 3-D Wing Unified Engineering

Learning Objectives

- Measure lift, drag, moment from load cell data, using reference-axis conversions
- Perform lift and drag predictions for a 3-D wing, and compare to measurements

Secondary Objectives, for Flight Competition Project

• Get familiar with performance parameters for 3-D wings

Experimental Rig

- Test Article: Aegea 2-meter RC glider wing, with and without wingtips
- WBWT Instrumentation:
 - Tunnel's pitot-static probe
 - Wing load cell
- Wing parameters:

parameter	whole wing	without tips	units	definition
S =	490	257	in^2	area $(= \int c dy$)
b =	78.5	36	in	span $(= \int dy)$
$c_{\rm avg} =$	6.25	7.15	in	average chord $(= \int c dy / \int dy = S/b)$
$c_{\rm ref} =$	6.45	7.16	in	reference chord (r.m.s. chord = $\int c^2 dy/S$)
$x_{\rm ref} =$	2.29	2.29	in	moment-reference location
$x_o =$	2.7	2.7	in	load cell location
$y_o =$	-2.5	-2.5	in	load cell location
e =	0.97	0.92	_	span efficiency, estimated

Test Conditions

- Nominal tunnel speed: V = 25 mph (11 m/s)
- Nominal angles of attack from near-zero lift to near-stall, in increments of $\sim 2^{\circ}$.

Set $\alpha = -4^{\circ} \dots 16^{\circ}$, or until stall.

Data Recording

- All data are sampled continuously at about 1 Hz, and stored to an Excel file.
- Each of the two Excel files will contain all α points for one wing, plus the tare data.
- Follow data recording instructions as given by staff or TA present at the test.

Raw Data Acquired for each model, each V

- $q_{\infty}, p_{\infty}, T_{\infty}$ for each α point, from tunnel's pitot-static probe
- Load-cell voltages for each α point, sampled for about 20–30 seconds.
- Load-cell voltages at zero wind (tare readings) at smallest α . Input artificial $\alpha = 81$.
- Load-cell voltages at zero wind (tare readings) at largest α . Input artificial $\alpha = 82$.
- While α is being changed, the data is invalid. Input artificial $\alpha = 99$ when wing is in α -motion to make spreadsheet ignore this data.

Data processing

- We will provide a spreadsheet program for reducing the raw load cell data.
 - Paste your raw spreadsheet data into the spreadsheet program in the same columns.
 - Enter the wing parameters and your test α values in column X
 - Spreadsheet outputs will be C_x , C_y , and C_{Mo} versus α , in highlighted box.
- You must perform the necessary axis rotation to get C_L and C_D . (Anderson 1.5).
- The C_{Mo} is about the (x_o, y_o) load-cell location. You must translate it to the $(x_{ref}, 0)$ reference point to get $C_M \equiv C_{M,ref}$. See figure below.

• Determine the average-chord Reynolds number. Two or three significant digits is adequate here, e.g. Re = 110000, not Re = 111362.17

Prediction calculations

• Compute <u>viscous</u> c_d , c_ℓ , c_m vs α_{2D} polars with XFOIL for the test Reynolds number. Using small α steps of 0.5° or less will make XFOIL converge more reliably. Save computed polars to text files, and import into Excel or Matlab and plotting together with experimental data. Airfoil coordinate file:

/mit/drela/Public/aegea_4.dat

XFOIL's c_d , c_ℓ , $c_m \alpha_{2D}$ output must be converted to corresponding 3D numbers for plotting:

- Assume $C_L = c_\ell$, $C_M = c_m$
- Compute $C_D = c_d + C_{Di} = c_d + C_L^2 / (\pi AR e)$ for each polar point
- Compute $\alpha_{3D} = \alpha_{2D} + \alpha_i = \alpha + C_L/(\pi AR e)$ for each polar point.

Lab Report Contents

- Name of author, and members of the lab group
- Abstract
- Sketch of experimental setup, showing key dimensions
- Plots for each flap position:
 - $-C_D(C_L)$, for measurements and predictions,
 - $-C_L(\alpha)$, for measurements and predictions, the latter being $C_L(\alpha_{3D})$
 - $-C_M(\alpha)$, for measurements and predictions, the latter being $C_M(\alpha_{3D})$
- Estimates of uncertainty and errors in results.
- Discussion of data and comparison with predictions

Note: Each student submits a report. Within your test group, you will share data and may collaborate in the spreadsheet data reduction work

