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Lab 7 Lecture Notes

Nomenclature

W total weight (= Wwing + Wfuse + Wpay)
S reference area (wing area)
AR wing aspect ratio
cr root wing chord
ct tip wing chord
λ taper ratio (= ct/cr)
Io wing root bending inertia
E Young’s modulus
Mo wing root bending moment

b wing span
c average wing chord
Tmax maximum thrust
CL lift coefficient
CD drag coefficient
cd wing profile drag coefficient
CDA0 drag area of non-wing components
κo wing root bending curvature
δ tip deflection

Design Space

Design Variables are numbers whose values can be freely varied by the designer to define a
designed object. As a very simple example, consider a rectangular wing with a pre-defined
airfoil. It can be defined by deciding on the values of the following two design variables:

{ b , c } (1)

Placing these variables along orthogonal axes defines a design space, or set of all possible
design options. Each point in the design space corresponds to a chosen design, as illustrated
in Figure 1.
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Figure 1: Two-variable design space of a rectangular wing.
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Variable Set Choice

Frequently, an alternative variable set can be defined in terms of the starting variable set.
For example, we can define the same design space using the variable set

{AR , S } (2)

with the following relations translating between the two alternative variable sets:

AR = b/c
S = b c

b =
√

S×AR

c =
√

S/AR
(3)

Figure 2 shows the alternative {AR , S } design space. Other variable sets are possible for
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Figure 2: Alternative design variable set of a rectangular wing.

this case, such as {AR, b}, {S, b}, etc. The best variable set is usually the one which gives the
simplest or clearest means to evaluate the objective function, or performance of the design,
so that the best point in the design space can be selected.

Example Objective Function

As an example, we wish to determine a wing design which will maximize the payload weight
of an electric aircraft, whose motor and propeller can generate at most some given maximum
thrust Tmax. We begin with the level flight force-equilibrium relations,

W = L (4)

Tmax = D = L
CD

CL

= W
CD

CL

(5)
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Tmax = (Wfuse + Wwing + Wpay)

(

CDA0/S

CL

+
cd

CL

+
CL

π AR

)

(6)

Therefore, the objective function to be maximized is obtained by solving for the payload
weight.

Wpay(AR, S) =
Tmax

CDA0/S

CL

+
cd

CL

+
CL

π AR

− Wfuse − Wwing (7)

Since AR and S appear explicitly in this objective function definition, these are probably the
best choices for the design variables.

Objective Function Contours

In practice, the dependence of Wpay on {AR, S} is far more complex than what’s explicitly
visible in equation (7). For example, the wing weight Wwing will clearly depend on {AR, S},
as will cd via the chord Reynolds number. Also, Tmax will likely depend on the flight speed,
which is influenced by wing loading and hence by S. Given quantitative models of all these
effects, we can numerically determine the value of Wpay for every {AR, S} combination. The
results might be as shown in Figure 3, which shows the objective function as contours, or
isolines. The point where the objective function has a maximum represents the optimum
design.
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Figure 3: Objective function contours (isolines) in design space of a rectangular wing. Black
dot shows the optimum-design maximum payload weight point.

Constraints

In almost any real design optimization problem, an objective function such as given by
equation (7) does not capture all considerations which might go into selection of a design.
Frequently one has to account for constraints which rule out certain regions of the design
space. One typical constraint which appears in wing design is the structural requirement of
adequate strength or stiffness.
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To incorporate a stiffness constraint, we first must express the stiffness requirement in
terms of the chosen design variables, or {AR, S} in this case. We will require that the
tip-deflection/span δ/b not exceed some reasonable upper limit, say

δ/b ≤ 0.05 . . . 0.10 (8)

in 1G flight. The tip deflection can be estimated using simple beam theory. Assuming the
beam curvature to be roughly constant across the span and equal to its value κo at the root,
the estimated tip deflection is given as follows.

κo =
Mo

EIo

(9)

δ ≃ 1

2
κo

(

b

2

)2

(10)

To use this, we still need to estimate the root bending moment Mo and root bending inertia
Io. A conservative estimate is that the net local loading/span is proportional to the chord.
For a simple-taper wing with taper ratio λ = ct/cr, the root bending moment is then obtained
by twice integrating this loading, giving

Mo =
1

12

1 + 2λ

1 + λ
(Wfuse + Wpay) b (11)

Assuming the wing is constructed out of a solid material the bending inertia of its root airfoil
cross section is approximately

Io ≃ 0.036 cr tr(t
2
r
+ h2

r
) = 0.036 c4

r
τ(τ 2 + ε2) (12)

where tr is the maximum root airfoil thickness, hr is the maximum root airfoil camber height,
τ = t/c is the airfoil thickness/chord ratio, and ε = h/c is the airfoil camber/chord ratio.
For a straight-taper wing of taper ratio λ, the root chord is related to the average chord by

cr = c
2

1+λ
(13)

Combining equations (10), (11), (12), and (13) gives

δ

b
= 0.018

Wfuse + Wpay

Eτ(τ 2 + ε2)
(1+λ)3(1+2λ)

b2

c4
(14)

Putting b and c in terms of our chosen design variables {AR, S} as given by (3), the deflec-
tion/span ratio finally becomes

δ

b
= 0.018

Wfuse + Wpay

Eτ(τ 2 + ε2)
(1+λ)3(1+2λ)

AR3

S
(15)

In the design space, the isolines of δ/b are given by rearranging equation (15) into

S =

[

0.018

(δ/b)

Wfuse + Wpay

Eτ(τ 2 + ε2)
(1+λ)3(1+2λ)

]

AR3 (16)
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Figure 4: Wing deflection/span contours (dashed) superimposed on objective function con-
tours (solid). The contour δ/b = 0.05 is the chosen constraint boundary. Black dot shows
the constrained maximum-payload weight point.

which is shown in Figure 4 for three values of δ/b. All points above the δ/b = 0.05 isoline
satisfy a chosen deflection constraint (8), and hence constitute the feasible design space. The
new constrained optimum design is the point of maximum objective function which still lies
in the feasible design space.

Additional Design Variables

Most practical design problems have vastly more than the two design variables {AR, S}
assumed in the examples above. A basic rule is that any adjustable quantity which is likely
to have a strong effect on the constrained objective function should be considered as a design
variable. One such candidate is the wing taper ratio ct/cr =λ, which clearly has a powerful
effect on the tip deflection in relation (15). If λ is chosen as a new design variable, the design
space is now three dimensional as shown in Figure 5.

{AR , S , λ} (17)

λ

AR

0

1

S

Figure 5: Three-variable design space. As before, each point represents a unique design.
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In reality, there would also be other variables such as the modulus E of the construction
material, CL and cd via airfoil shape, etc. The design space would then be

{ AR , S , λ , E , CL , cd . . .} (18)

Design Space Slicing

Because the entire design space of many dimensions is impossible to visualize graphically, we
typically attempt to get its character by slicing it with a plane defined by only two variables,
by choosing unique values for all the others. For example, the 2D space in Figure 4 is the
same as the 3D space in Figure 5 sliced along the λ = 1 plane. Two of the three possible
slice orientations are also shown in Figure 6.
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Figure 6: Two 2D slices through a 3D design space. The variable(s) which are not along the
axes of a slice are held fixed.

Occasionally it is also useful to slice a design space using 1D lines rather than 2D planes.
This allows plotting of a quantity of interest, such as Wpay in the current example, along
each slice line. This is an alternative means of locating the optimum design, in lieu of the
contour technique shown in Figure 3.
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Figure 7: Three line slices through a 3D design space.
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