Design Variable Concepts

Lab 7 Lecture Notes - Addendum

Alternative Objectives

Frequently, an engineering design problem will involve competing objectives. For example, an alternative objective to minimize flight power (or maximize payload), is to maximize the maximum-attainable flight speed. The level-flight thrust relations still apply to this flight condition, but now the thrust is a known quantity, and equal to the maximum available thrust from the powerplant.

$$
\begin{align*}
T_{\max } & =\frac{1}{2} \rho V_{\max }^{2} S\left[\frac{C D A_{0}}{S}+c_{d}\left(C_{L_{\min }} ; R e_{\max }\right)+\frac{C_{L_{\min }}^{2}}{\pi e A R}\right] \tag{1}\\
\text { where } \quad C_{L_{\min }} & =\frac{2 W / S}{\rho V_{\max }^{2}}
\end{align*}
$$

This can be solved for $V_{\max }$, or equivalently $C_{L_{\min }}$, by numerical means if necessary. If one can assume that at $V_{\max }$ the induced drag is negligible, and c_{d} is some constant, then we have

$$
\begin{equation*}
V_{\max }(A R, S) \simeq\left[\frac{2 T_{\max }}{\rho\left(C D A_{0}+S c_{d}\right)}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

which is a suitable alternative objective function.
The figure shows the isolines of $V_{\max }$ versus the design variables, calculated using (1). The slight upturn in the isolines for decreasing $A R$ is the $R e$ effect in c_{d}. The sharp downturn near $A R=0$ is due to the induced drag term. Isolines computed using the approximation (2) would be level. Now the stiffness-constrained optimum results in an unreasonably small wing, which means that other more practical constraints are likely to come into play.

Figure 1: Objective function contours (isolines) in design space of a rectangular wing. Dot shows the stiffness-constrained optimum point.

Iterative Calculation of $V_{\max }$

Although equation (1) cannot be explicitly solved for $V_{\max }$, it is possible to solve it by a reasonably simple iterative procedure.
We first use equation (2) to give a first approximation $\tilde{V}_{\max }$.

$$
\begin{equation*}
\tilde{V}_{\max }(A R, S)=\left[\frac{2 T_{\max }}{\rho\left(C D A_{0}+S c_{d}\right)}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

This is then used to compute an estimated \tilde{C}_{L} and $\tilde{R} e$.

$$
\begin{align*}
\tilde{C}_{L}(A R, S) & =\frac{2 W / S}{\rho \tilde{V}_{\max }^{2}} \tag{4}\\
\tilde{R e}(A R, S) & =\frac{\tilde{V}_{\max } c}{\nu} \tag{5}
\end{align*}
$$

These then allow an improved estimation of $C_{D_{i}}$, or c_{d}, or both.

$$
\begin{align*}
\tilde{C}_{D_{i}}(A R, S) & =\frac{\tilde{C}_{L}^{2}}{\pi e A R} \tag{6}\\
\tilde{c}_{d}(A R, S) & =c_{d}\left(\tilde{C}_{L}, \tilde{R} e\right) \tag{7}
\end{align*}
$$

Note that this new $C_{D_{i}}$ is much better than the first estimate, which merely assumed $C_{D_{i}}=0$. The new c_{d} may or may not be better than the initial estimate of assuming c_{d} was some constant. In any case, the new $\tilde{C}_{D_{i}}$ and/or new \tilde{c}_{d} are then used in equation (1) to get an improved $V_{\max }$ estimate.

$$
\begin{equation*}
V_{\max }(A R, S)=\left[\frac{2 T_{\max }}{\rho\left(C D A_{0}+S \tilde{c}_{d}+S \tilde{C}_{D_{i}}\right)}\right]^{1 / 2} \tag{8}
\end{equation*}
$$

The iteration can be repeated by starting again at (4), although the additional accuracy gain is likely to be minimal.
The $V_{\max }$ calculated by this procedure will fully include the $C_{D_{i}}$ contribution to the total drag, and will also include Reynolds number effects if the $c_{d}\left(C_{L}, R e\right)$ function is used. The resulting $V_{\max }$ isolines should resemble those in Figure 1.

