MK 8
Free Body Diagram:

Apply equilibrium to find reactions

$$
\begin{array}{ll}
+\sum F_{x}=0 & H_{A}=0 N \\
+\sum \sum F_{y}=0 & V_{A}+V_{H}-P=0 \\
+\left(\sum M_{A}=0\right. & V_{H}(4 L)-P(2 L)=0 \\
& \Rightarrow V_{H}=\frac{P}{2} \\
V_{A}=\frac{P}{2}
\end{array}
$$

To DeTERMINE THE DEFLECTION of D, we nEED TO EMPLOY COMPATIBILITY \& CONSTITUTIVE LAWS. OUR CONSTITUTIVE LAW FOR BAR DEFORMATION IS:

$$
\delta_{i j}=\frac{F_{i j} L_{i j}}{A E}
$$

SO WEAL NEED TO SOLVE FOR THE BAR FORCES in order to determine their extensions, and hence the truss deflection.

BECAUSE OF SYMMETRY, 1 ONLY NEED TO FIND HALF OF THE BAR FORCES. ALL OF THE PAIRS MIRRORED IN THE DEE AXIS WILL have the same bar force:

$$
\begin{array}{ll}
F_{A C}=F_{G H} & F_{B D}=F_{D C} \\
F_{A B}=F_{F H} & F_{C D}=F_{D G} \\
F_{B C}=F_{F G} & F_{C E}=F_{C G}
\end{array}
$$

Solve for independent bar forces:

MoJ@A:

$$
\begin{aligned}
\sum F_{y}= & \frac{P}{2}-F_{A B} \cos 45=0 \\
& F_{A B}=P / \sqrt{2} \\
\sum F_{x}= & F_{A C}+F_{A B} \sin 45=0 \\
& F_{A C}=-\frac{P}{2}
\end{aligned}
$$

MOT @B:

$$
\begin{aligned}
\Sigma F_{y}=0= & F_{B C}+(P / \sqrt{2}) \cos 45= \\
& F_{B C}=-P / 2 \\
\Sigma F_{x}=0= & F_{B D}-(P / \sqrt{2})_{\sin 45} \\
& F_{B D}=P / 2
\end{aligned}
$$

$$
\begin{gathered}
\sum F_{Y}=0=\frac{P}{2}-F_{C D} \cos 45 \\
F_{C D}=\frac{P}{\sqrt{2}} \\
\downarrow M_{D}=0=-F_{C E} \nvdash-\frac{P}{Z /}(\not \angle \not \angle)=0 \\
F_{C E}=-P
\end{gathered}
$$

Mas:

$$
\begin{aligned}
& \sum F_{Y}=0 \\
&-P-F_{D E}=0 \\
& F_{D E}=-P
\end{aligned}
$$

BAR	FORCE $\left(\frac{F_{i j}}{P}\right)$	LENGTH $\left(\frac{L_{i j}}{L}\right)$	DEFAMATION $\delta_{i j} / \frac{P_{L}}{A E}$
$A B$	$+1 / \sqrt{2}$	$\sqrt{2}$	+1
$A C$	$-1 / 2$	1	$-1 / 2$
$C B$	$-1 / 2$	1	$-1 / 2$
$C E$	-1	1	-1
$C D$	$+\frac{1}{\sqrt{2}}$	$\sqrt{2}$	+1
$B D$	$-\frac{1}{2}$	1	$+\frac{1}{2}$
$E D$	-1	1	-1
$E G$	-1	1	-1
$D G$	$+\frac{1}{\sqrt{2}}$	1	+1
$D F$	$-\frac{1}{2}$	$1 / 2$	$\sqrt{2}$
$G F$	$+1 / \sqrt{2}$	$\frac{1}{2}$	
$G H$		1	$-\frac{1}{2}$
$F H$		1	

NOW LE CAN GO AHEAD AND PET OUR TRUSS DEFLECTION DIAGRAM.

$$
\delta_{0}=\frac{P L}{A E}
$$

If MY HINGE POINT A^{\prime} ENDS UP DISPLACED FROM MY ORIGIN BY $\delta_{A_{x}}$ ANS $\delta_{A_{y}}$,
THEN RH ORIGIN OD IS DISPLACED FROM A^{\prime} BY $-\delta_{A_{x}}$ AND $-\sigma_{A_{y}}$.
$13 \delta_{0}=\delta_{A}$ IF 1 NOW CONSIDER THE FIXED FRAME OA, wHERE A and A^{\prime} are the same, 1 CAN FIND THE DEFLECTION OF D^{\prime} IN THE FIXED FRAME, WHICH IS JUST ITS DISPLACEMENT FROM A' NAMELY

$$
-\delta_{A_{x}} \hat{\imath}-\delta_{A_{y}} \hat{\jmath}
$$

THE JOINT D WILL TRANSLATE DOWN $B Y \frac{13}{2} \frac{P L}{A E}$, AND LEFT BY $\frac{3}{2} \frac{P L}{A E}$

Estimate of TRuss Deflections
BARS in EXPERIMENTAL TRUSS MADE OF STEEL - HOLLOW WITH 22 mM OUTER DIAMETER AND 1.5 mm WALL THICKNESS (IGNORE END FITINGS)

$$
\begin{aligned}
A & \approx 2 \pi r t \\
& \approx 10.5 \times 10^{-3} \times 2 \times \pi \times 1.5 \times 10^{-3} \\
L & =0.5 \mathrm{~m} \\
E & =210 \mathrm{GPa}
\end{aligned}
$$

CENTER POINT DEFLECTION

$$
\begin{aligned}
& \frac{\delta_{D}}{P}=\left(\frac{0.5}{100 \times 10^{-6} \times 210 \times 10^{9}}\right)\left(\frac{-13}{2} \hat{\jmath}-\frac{3}{2} t\right) \\
& \frac{\delta_{D}}{P}=\frac{-3.1}{2} \times 10^{-7} \hat{\jmath}-\frac{7.1}{2} \times 10^{-8} \hat{\imath} \frac{\mathrm{~m}}{\mathrm{~N}}
\end{aligned}
$$

$M 9$

$$
\begin{aligned}
& \sum \vec{F}_{X}=0: 10+H_{3}+H_{A}=0 \quad \text { (1) } \\
& \sum F_{Y} \uparrow=0: V_{B}+0=0 \Rightarrow V_{3}=0 \\
& \sum\left(M_{B}=0: H_{A} \cdot 1+10 \cdot 2=0 \Rightarrow H_{A}=-20 \operatorname{kN}(3) \Leftarrow\right.
\end{aligned}
$$

Substitute in (1) $\quad H_{B}=+10 \mathrm{KN}$

Bar Fivces

$$
\begin{aligned}
\text { MOJ Q D }
\end{aligned}
$$

M_{0} J $B C$.

$$
\sin \theta=\frac{1}{\sqrt{5}}
$$

ε

$$
\cos \theta=\frac{2}{\sqrt{5}}
$$

$$
\begin{gathered}
\sum F_{Y} \uparrow=0 \quad F_{C B} \sin \theta-F_{C D}=0 \\
F_{C B}=+-\frac{F_{C D}}{\sin \theta}=-5 \sqrt{5} \mathrm{kN} \in \\
\sum \vec{F}_{X}=0:-F_{A C}-F_{C D} \cos \theta=0 \\
F_{A C}=-F_{C D} \cos \theta=+5, \sqrt{5} \cdot \frac{2}{\sqrt{8}}=+10 \mathrm{KN} \in
\end{gathered}
$$

MaJ A

$$
\begin{aligned}
& \cos \theta=\frac{2}{\sqrt{5}} \\
& \sin \theta=\frac{1}{\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{Y} \uparrow=0 \quad F_{A B}-F_{A D} \sin \theta=0 \\
& \sum \overrightarrow{F_{x}}=0 \\
& F_{A B}=F_{A D} \sin \theta \\
& =122+5 \sqrt{5} \cdot \frac{1}{\sqrt{5}}=+5 \mathrm{KN} \Leftarrow
\end{aligned}
$$

check mos

OK!

Dran displacement diagram (see altached)

$$
\begin{aligned}
& \text { vertical deflectiun }=\frac{92.5 \times 10^{3}}{A E}= 2.64 \times 10^{-3} \mathrm{~m} \\
&=2.64 \mathrm{~mm} \\
& \text { Hanjoulal deflectũ }=\frac{75 \times 10^{3}}{A E}=2.14 \times 10^{-3} \mathrm{~m} \\
&=2.14 \mathrm{~mm} \in
\end{aligned}
$$

103/AE

M10 Use superpositum (ar set up as a set of unknams)

FBD

$$
\begin{array}{ll}
\sum F_{Y} \uparrow=0: & V_{B}+R_{D}=0 \\
\sum \vec{F}_{X}=0: & H_{A}+H_{B}=0 \tag{2}\\
\sum C_{B}=0: & H_{A} \cdot 1+R_{D} \cdot 2=0 \\
& H_{B}=+2 R_{D} .
\end{array}
$$

Bar fuces: Mellurd of jouls

$$
\begin{aligned}
& \cos \theta=\frac{2}{\sqrt{5}} \\
& \sin \theta=\frac{1}{\sqrt{5}}
\end{aligned}
$$

$$
\begin{array}{r}
\sum \vec{F}_{x}=0: \quad F_{A D} \cos \theta=0 \quad \Rightarrow F_{A D}=0 \\
\Sigma F_{y} \hat{\Gamma}=0 \quad F_{A D} \sin \theta+F_{C D}+R_{D}=0 \\
F_{C D}=-R_{D}
\end{array}
$$

$$
\sum F_{Y} \uparrow=0: \quad F_{B C} \sin \theta-F_{C D}=0
$$

$$
F_{B C}=-R_{D} \sqrt{S}
$$

$$
\sum \overrightarrow{F_{x}}=0: \quad-F_{A C}-F_{B C} \cos \theta=0
$$

$$
F_{A C}=R_{D \sqrt{8}} \cdot \frac{2}{\sqrt{5}}=2 R_{D}
$$

$$
\begin{aligned}
& \sum F_{y} \uparrow=0 \quad F_{A B}-F_{A D} \sin \theta=0 \\
& F_{A B}-0=0 \\
& F_{A B}=0
\end{aligned}
$$

check MoS

$F_{B C}=-\frac{q R_{D} \sqrt{5}}{k}=-\sqrt{5} R_{D} \quad \& R_{D}$
ched.

Bar	Langm	Firce $/ R_{D}$	$\delta / R_{D} /$ AE
$A B$	1	0	0
$A C$	2	2	4
$B C$	$\sqrt{5}$	$-\sqrt{5}$	-5
$A D$	$\sqrt{5}$	0	0
$C D$	1	-1	-1

Drour displacement diagrum

D displaces upwind $\Delta D_{y}=\frac{18.5 R_{D}}{A E^{-}}$

Since D is an a romer $\delta^{(M 9)}+\delta^{(M 10)}=0$

$$
\frac{92.5 \times 10^{3}}{A E}+\frac{18.5 R_{D}}{A E}=0 \quad R_{D}=-\frac{92.5 \times 10^{3}}{18.5}=-5 \mathrm{kNE}
$$

Haizombal deffection:

$$
\begin{aligned}
\Delta D_{x}^{M 9}+\Delta D_{x}^{M 10}=\frac{75 \times 10^{3}}{A E}+\frac{(9.5 \times-5) \times 10^{3}}{A E} & =786 \times 10^{-6} \\
& =0.79 \mathrm{mmE}
\end{aligned}
$$

Reactions

$$
\begin{aligned}
& H_{B}=H_{B}^{M 9}+H_{B}^{m 10}=+10+2(-5)=0 \\
& H_{A}=H_{A}^{M 9}+H_{A}^{m 10}=-20+\theta^{2}(-2(-5))=-10 \mathrm{kN} \Leftarrow \\
& V_{B}=V_{B}^{M 9}+V_{B}^{m 10}=0-(-5)=+5 \mathrm{kN} \Leftarrow
\end{aligned}
$$

$$
\uparrow S K N
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v}{u}=-\frac{x}{y} \\
y d y & =-x d x \\
\frac{1}{2} y^{2} & =-\frac{1}{2} x^{2}+C
\end{aligned}
$$

$$
x^{2}+y^{2}=2 C \quad \text { circles of radius } \sqrt{2 C}
$$

For steady flow, with $\rho=$ cost, must have $\nabla \cdot \vec{u}=\frac{\partial u}{\partial x}+\frac{\partial r}{\partial y}=0$

$$
\left.\begin{array}{ll}
u=\frac{-y}{x^{2}+y^{2}} & \frac{\partial u}{\partial x}=\frac{y \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}} \\
v=\frac{x}{x^{2}+y^{2}} & \frac{\partial v}{\partial y}=\frac{-x \cdot 2 y}{\left(x^{2}+y^{2}\right)^{2}}
\end{array}\right\} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

Control Volume:

a) mass conservation

$$
\oiint_{\rho} \vec{V} \cdot \hat{n} d A=-\rho V A+\rho V_{2}(10 A)=0 \rightarrow V_{2}=\frac{1}{10} V
$$

6) momentum conservation

$$
0=\oiint(p \hat{n}+\rho(\vec{V} \cdot \hat{n}) \vec{V}) d A=-p_{1} \cdot 10 A-\rho V^{2} A+p_{2} \cdot 10 A+\rho V_{2}^{2} 10 A+10\left(-V^{2}+\frac{1}{10} V^{2}\right) A
$$

F8 Solution Fall 'os
Control Volume:

By mass conservation, $V_{2}=V$

$$
\begin{equation*}
1 \frac{4}{2} \tag{2}
\end{equation*}
$$

Because flow is periodic, $\vec{V}_{3}=\vec{V}_{4}, p_{3}=p_{4}$
And since $\hat{n}_{4}=-\hat{n}_{3}$, then sides (3) and (4) will cancel in momentum integral.

$$
\oint_{(1)}(p \hat{n}+\rho \vec{V} \cdot \hat{n} \vec{V}) d A+\oint_{(2)}(p \hat{n}+\rho \vec{V} \cdot \hat{n} \vec{V}) d A=-\vec{F}
$$

By symmetry, $\oint_{(1)} p \hat{n} d A+\oiint_{(2)} p \hat{n} d A=0$

$$
\begin{aligned}
& \oiint(\rho \vec{V} \cdot \hat{n} \vec{V}) d A+\oiint \rho \vec{V} \cdot \hat{n} \vec{V} d A=-\vec{F} \\
& -\rho V \frac{\sqrt{2}}{2} \cdot V\left[\begin{array}{l}
\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right] h+\rho V \frac{\sqrt{2}}{2} \cdot V\left[\begin{array}{l}
\sqrt{2} / 2 \\
-\sqrt{2} / 2
\end{array}\right]=-\vec{F} \\
& \vec{F}=\left[\rho V^{2} h\right] \quad \text { Vertical Force }
\end{aligned}
$$

