M 2

$$
\tilde{x}_{2}
$$

Consider thickness δx_{3}
work in terms of $\delta \tilde{x}_{1} \rightarrow \delta x_{2}=\delta \tilde{x}_{1} \sin \theta$

$$
\delta x_{2}=\delta \tilde{x}_{1} \cos \theta
$$

$$
\begin{aligned}
& \sum \vec{F}_{1}=0: \tilde{\sigma}_{11} \delta \tilde{x}_{1} \cdot \delta x_{3}-\sigma_{11} \delta \tilde{x}_{1} \cos \theta \delta x_{3} \cdot \cos \theta \\
& -\sigma_{12} \delta \tilde{x}_{1} \cos \theta \cdot \delta x_{3} \cdot \sin \theta-\sigma_{22} \cdot \delta \tilde{x}_{1} \sin \theta \cdot \delta x_{3} \sin \theta
\end{aligned}
$$

$$
-\sigma_{21} \cdot \delta \tilde{x}_{1} \sin \theta \cdot \delta x_{3} \cos \theta=0
$$

δx_{3} 's cancel, $\quad \sigma_{21}=\sigma_{12}$

$$
\Rightarrow \tilde{v}_{11}=\cos ^{2} \theta v_{11}+\sin ^{2} \theta v_{22}+2 \cos \theta \sin \theta \sigma_{12}
$$

and similarly fur $\tilde{\sigma}_{12}$

$$
\begin{aligned}
\frac{d \tilde{\sigma}_{11}}{d \theta}= & -2 \sigma_{1} \cos \theta \sin \theta+2 \sigma_{2} \sin \theta \cos \theta \\
& +\left(2 \cos ^{2} \theta-2 \sin ^{2} \theta\right) \sigma_{12}=0
\end{aligned}
$$

simplifs $\cos \theta \sin \theta=\frac{1}{2}(\sin 2 \theta)$

$$
\begin{gathered}
\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta \\
\frac{1}{2}(x+\cos 2 \theta)-\frac{1}{2}(x-\cos 2 \theta) \\
=\cos 2 \theta \\
\Rightarrow \sigma_{22} \sin 2 \theta-\frac{\sigma_{11} \sin 2 \theta+2 \cos 2 \theta \sigma_{12}=0}{\left(\sigma_{22}-\sigma_{11}\right) \tan 2 \theta+2 \sigma_{12}=0} \\
\tan 2 \theta=\frac{2 \sigma_{12}}{\left(\sigma_{22}-\sigma_{11}\right)}
\end{gathered}
$$

cf. MShr's Cwale

$$
\begin{aligned}
& \sum F_{\tilde{x}}^{E}=0 \\
& \sigma_{12} \delta \tilde{x}_{1} \delta x_{3}+\tilde{\sigma}_{11} \delta x_{1} \cos \theta \delta x_{3} \sin \theta \\
& -\sigma_{12} \delta \tilde{x}_{1} \cos \theta \delta x_{3} \cos \theta-\sigma_{22} \delta \tilde{x}_{1} \sin \theta \cdot \delta x_{3} \cos \theta \\
& +\sigma_{21} \delta \tilde{x}_{1} \sin \theta \delta x_{3} \sin \theta=0 \\
& \Rightarrow \tilde{\sigma}_{12}=
\end{aligned}
$$

UE Fluids Flo Solution Fall 'os
a)

$$
\begin{aligned}
& u=-y \quad v=x \\
& \frac{d y}{d x}=\frac{v}{u}=\frac{-x}{y} \rightarrow \quad y d y=-x d x \quad \rightarrow \quad \frac{1}{2} y^{2}=\frac{-1}{2} x^{2}+C
\end{aligned}
$$

$$
x^{2}+y^{2}=2 C \quad \text { circles of radius } \sqrt{2 C}
$$

b)

$$
\begin{aligned}
& \frac{D u}{D t}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-y \cdot 0+x \cdot(-1)=-x \\
& \frac{D v}{D t}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-y \cdot 1+x \cdot 0=-y
\end{aligned}
$$

using momentum oqn: $\quad \frac{\partial p}{\partial x}=-\rho \frac{D_{n}}{D_{t}}=\rho x$

$$
\frac{\partial p}{\partial y}=-\rho \frac{D_{r}}{\partial t}=\rho y
$$

$$
\nabla p=\frac{\partial p}{\partial x} \hat{\imath}+\frac{\partial p}{\partial y} \hat{\jmath}=p x \hat{\imath}+p y \hat{\jmath}
$$

c)

$$
\left.\begin{array}{l}
\frac{\partial p}{\partial x}=p x \\
\frac{\partial p}{\partial y}=p y
\end{array}\right\} \quad p=\frac{1}{2} \rho\left(x^{2}+y^{2}\right)+\phi
$$

UE Fluids \quad Fill Solution \quad Fall 'O3
a)

$$
\begin{aligned}
& u=C y \quad r=0 \\
& \xi_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=-C \\
& \text { or, } \omega_{z}=\frac{1}{2} \xi_{z}=-\frac{1}{2} C \\
& \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\frac{1}{2} C
\end{aligned}
$$

b) Simple shearing motion, which is a $50-50$ combination of rotation and shear

$$
\begin{aligned}
& -\omega_{z}+ \\
\frac{\partial u}{\partial y}= & -\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial r}{\partial x}\right) \\
C= & -\left(-\frac{1}{2} c\right)+\frac{1}{2} C
\end{aligned}
$$

