

Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

Unified Engineering Fall 2004 Problem Set \# 1

	Time Spent (min)
U1	
U2	
Study Time	

Name:

Problem U1 (Range Equation)

a) Assuming steady-level flight and no fuel reserves, estimate the range of a B-777 using the information given in the lecture notes (and/or on Boeing's web page). How well does this compare to the estimates Boeing publishes on their web page?
b) Now assuming that L / D, propulsion system efficiency and final weight are unchanged, estimate the range of a B-777 if the same volume of liquid hydrogen were to be used instead of Jet-A.
c) Derive an equation for the range of a battery-powered aircraft in steady-level flight. Express the range in terms of L/D, propulsion system efficiency, battery mass and heating value, and aircraft weight. Estimate the range of a B-777 if the fuel was taken out and replaced with its equivalent weight in batteries.

"FUEL"	Heating Value $(\mathrm{MJ} / \mathrm{kg})$	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Jet-A	42.8	800
Liquid Hydrogen	120	70
Batteries	2.5	8000

U2 A 10 m by 10 m grid is situated in the ($\mathrm{x}-\mathrm{y}$) plane. The grid is made up of rigid rods connected at 1 m increments. The following set of forces act on this grid:

Force 1 acts at point $(1,1)$ at an angle of 0.0° with a magnitude of 2 N
Force 2 acts at point $(1,-4)$ at an angle of 63.4° with a magnitude of 5 N
Force 3 acts at point $(2,-3)$ at an angle of -116.6° with a magnitude of 5 N
Force 4 acts at point $(-5,-5)$ at an angle of 45° with a magnitude of 3 N
Force 5 acts at point $(2,4)$ at an angle of 251.5° with a magnitude of 3 N Force 6 acts at point $(-5,5)$ at an angle of 315° with a magnitude of 4 N
(Note: Angles are measured positive counterclockwise relative to a line drawn parallel to the x -axis and through the acting point of the force.)

For this configuration:
(a) Describe each force as a vector and neatly draw out the described configuration.
(b) Determine the total (resultant) force acting on the grid.
(c) Can any of the forces be expressed as a couple? If so, do so?
(d) Determine the moment acting about the origin (center) of the grid
(e) Determine the moment acting about the upper right-hand corner of the grid.
(f) Determine the components of the moment acting about the y-axis and about the x-axis.

NOTE: Express the answer as a vector as appropriate.

