

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139

Unified Engineering Fall 2004
 Problem Set \#10

Due Date: Tuesday, November 16, 2004 at 5pm

	Time Spent (minutes)
M9	
M10	
M11	
F5	
F6	
F7	
Study Time	

Unified Engineering Problem Set \#10

Units M2.2, M2.3 Fall, 2004

10(M). 1 Consider the stress equations of equilibrium.
(a) Write these equation in engineering notation.
(b) Reduce the full three-dimensional equations to their plane stress form.

10(M). 2 Write out the succinct tensor equation that describes the following notation:

$$
\left\{\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right\}=\left[\begin{array}{lll}
B_{111} & B_{122} & 2 B_{112} \\
B_{211} & B_{222} & 2 B_{212} \\
B_{311} & B_{322} & 2 B_{312}
\end{array}\right]\left\{\begin{array}{l}
C_{11} \\
C_{22} \\
C_{12}
\end{array}\right\}
$$

10(M). 3 For each of the following two-dimensional displacement fields (no displacement in the x_{3}-direction), draw a neat sketch of a unit square (with the bottom left corner at the origin) before and after deformation (exaggerate deformation by a factor of 10). Calculate the associated two-dimensional strain field. Identify the "type" of deformation/ strain that characterizes the displacement.
(a) $\underline{u}=\left(0.015 x_{1}\right) \underline{i}_{1}-\left(0.030 x_{2}\right) \underline{i}_{2}$
(b) $\underline{u}=\left(0.030 x_{2}\right) \underline{i}_{1}+\left(0.020 x_{1}\right) \underline{i}_{2}$
(c) $\underline{u}=(0.030) \underline{i}_{1}-(0.015) \underline{i}_{2}$
(d) $\underline{u}=\left(0.040 x_{2}\right) \underline{i}_{1}-\left(0.040 x_{1}\right) \underline{i}_{2}$
(e) $\underline{u}=\left(0.060 x_{1}-0.040 x_{2}\right) \underline{i}_{1}+\left(-0.040 x_{1}-0.020 x_{2}\right) \underline{i}_{2}$
(Adapted from Anderson Problem 10, page 82).
A Learjet flies at speed $V_{1}=250 \mathrm{~m} / \mathrm{s}$, at an altitude of 10 km , where the atmospheric properties are $\rho_{1}=0.414 \mathrm{~kg} / \mathrm{m}^{3}, T_{1}=223 \mathrm{~K}$.
a) Determine the ambient pressure p_{1} and the flight Mach number M_{1}.
b) The flow about the Learjet is to be simulated using a $1 / 5$ scale model in a wind tunnel, operated at sea-level atmospheric pressure $p_{2}=10^{5} \mathrm{~Pa}$, Determine the operating conditions V_{2}, ρ_{2}, T_{2} which are required if the flow about the model is to correctly represent the flow about the actual Learjet.

Note:
The speed of sound and viscosity of air depend only on the temperature. Suitable formulas are given below, with T in Kelvin.

$$
\begin{array}{ll}
a=20 T^{1 / 2} & (\mathrm{~m} / \mathrm{s}) \\
\mu=10^{-6} T^{1 / 2} & (\mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s})
\end{array}
$$

The equation of state for air is

$$
\begin{aligned}
& \\
\text { where } & =\rho R T \\
R & =287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

Consider the 2-D velocity field $\vec{V}=u \hat{\imath}+v \hat{\jmath}$

$$
u=x \quad v=-y
$$

whose hyperbolic-shape streamlines are sketched below. The density ρ is everywhere constant.
a) Evaluate the mass-flow integral

$$
I=\oint \rho(\vec{V} \cdot \hat{n}) d A
$$

for the pie-slice control volume of radius R shown in the figure.
Hint: First express I as three separate integrals I_{1}, I_{2}, I_{3} over each of the three segments of the C.V. boundary, and simplify where possible. Also, I_{3} is most easily evaluated by first writing \vec{V}, \hat{n}, and $d A$ as functions of the polar coordinates r, θ. Note that $d A$ is a length in 2-D.
b) Does this flow satisfy the mass conservation law? Explain.

Unified Engineering

Air flows into a channel of height h with a linear velocity distribution.

$$
u_{1}(y)=\bar{u}_{1} \frac{y}{h}
$$

The air then mixes in the channel into a uniform velocity u_{2} at the outlet. The density ρ is constant everywhere. There is a uniform pressure p_{1} over the inlet plane, and a uniform pressure p_{2} over the outlet plane.
a) Apply the mass conservation integral to the dashed control volume shown in the figure,

$$
\oint \rho(\vec{V} \cdot \hat{n}) d A=0
$$

and thus determine the exit velocity u_{2} in terms of the known inlet maximum velocity \bar{u}_{1}.
b) Apply the momentum conservation integral to the dashed control volume,

$$
\oint[\rho(\vec{V} \cdot \hat{n}) \vec{V}+p \hat{n}] d A=0
$$

and thus determine the pressure difference $p_{2}-p_{1}$ in terms of ρ and \bar{u}_{1}. State whether the mixing causes the pressure to increase or decrease downstream.

