

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

Unified Engineering Fall 2004

Problem Set #10

Due Date: Tuesday, November 16, 2004 at 5pm

	Time Spent (minutes)
M9	(initiates)
M10	
M11	
F5	
F6	
F7	
Study Time	

Name:

Unified Engineering Problem Set #10 Fall, 2004

10(M).1 Consider the stress equations of equilibrium.

- (a) Write these equation in engineering notation.
- (b) Reduce the full three-dimensional equations to their plane stress form.

10(M).2 Write out the succinct tensor equation that describes the following notation:

$$\begin{cases} A_1 \\ A_2 \\ A_3 \end{cases} = \begin{bmatrix} B_{111} & B_{122} & 2B_{112} \\ B_{211} & B_{222} & 2B_{212} \\ B_{311} & B_{322} & 2B_{312} \end{bmatrix} \begin{cases} C_{11} \\ C_{22} \\ C_{12} \end{cases}$$

- 10(M).3 For each of the following two-dimensional displacement fields (no displacement in the x₃- direction), draw a neat sketch of a unit square (with the bottom left corner at the origin) before and after deformation (exaggerate deformation by a factor of 10). Calculate the associated two-dimensional strain field. Identify the "type" of deformation/strain that characterizes the displacement.
 - (a) $\underline{u} = (0.015 x_1) \underline{i}_1 (0.030 x_2) \underline{i}_2$
 - (b) $\underline{u} = (0.030 x_2) \underline{i}_1 + (0.020 x_1) \underline{i}_2$
 - (c) $\underline{u} = (0.030) \underline{i}_1 (0.015) \underline{i}_2$
 - (d) $\underline{u} = (0.040 \text{ x}_2) \underline{i}_1 (0.040 \text{ x}_1) \underline{i}_2$
 - (e) $\underline{u} = (0.060 x_1 0.040 x_2) \underline{i}_1 + (-0.040 x_1 0.020 x_2) \underline{i}_2$

(Adapted from Anderson Problem 10, page 82).

A Learjet flies at speed $V_1 = 250 \text{ m/s}$, at an altitude of 10 km, where the atmospheric properties are $\rho_1 = 0.414 \text{ kg/m}^3$, $T_1 = 223 \text{ K}$.

a) Determine the ambient pressure p_1 and the flight Mach number M_1 .

b) The flow about the Learjet is to be simulated using a 1/5 scale model in a wind tunnel, operated at sea-level atmospheric pressure $p_2 = 10^5$ Pa, Determine the operating conditions V_2 , ρ_2 , T_2 which are required if the flow about the model is to correctly represent the flow about the actual Learjet.

Note:

The speed of sound and viscosity of air depend only on the temperature. Suitable formulas are given below, with T in Kelvin.

$$\begin{array}{rcl} a &=& 20 \, T^{1/2} & ({\rm m/s}) \\ \mu &=& 10^{-6} \, T^{1/2} & ({\rm kg/m\cdot s}) \end{array}$$

The equation of state for air is

$$p = \rho RT$$

where $R = 287 \,\mathrm{J/kg} \cdot \mathrm{K}$

Consider the 2-D velocity field $\vec{V}=u\hat{\imath}+v\hat{\jmath}$

u = x v = -y

whose hyperbolic-shape streamlines are sketched below. The density ρ is everywhere constant.

a) Evaluate the mass-flow integral

$$I \;=\; \oint \rho \left(\vec{V} \cdot \hat{n} \right) \, dA$$

for the pie-slice control volume of radius R shown in the figure.

Hint: First express I as three separate integrals I_1 , I_2 , I_3 over each of the three segments of the C.V. boundary, and simplify where possible. Also, I_3 is most easily evaluated by first writing \vec{V} , \hat{n} , and dA as functions of the polar coordinates r, θ . Note that dA is a length in 2-D.

b) Does this flow satisfy the mass conservation law? Explain.

Air flows into a channel of height h with a linear velocity distribution.

$$u_1(y) = \bar{u}_1 \frac{y}{h}$$

The air then mixes in the channel into a uniform velocity u_2 at the outlet. The density ρ is constant everywhere. There is a uniform pressure p_1 over the inlet plane, and a uniform pressure p_2 over the outlet plane.

a) Apply the mass conservation integral to the dashed control volume shown in the figure,

$$\oint \rho \left(\vec{V} \cdot \hat{n} \right) dA \; = \; 0$$

and thus determine the exit velocity u_2 in terms of the known inlet maximum velocity \bar{u}_1 .

b) Apply the momentum conservation integral to the dashed control volume,

$$\oint \left[\rho \left(\vec{V} \cdot \hat{n} \right) \vec{V} + p \hat{n} \right] \, dA = 0$$

and thus determine the pressure difference $p_2 - p_1$ in terms of ρ and \bar{u}_1 . State whether the mixing causes the pressure to increase or decrease downstream.

