<table>
<thead>
<tr>
<th></th>
<th>Time Spent (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
</tr>
<tr>
<td>CP11</td>
<td></td>
</tr>
<tr>
<td>CP12</td>
<td></td>
</tr>
<tr>
<td>CP13</td>
<td></td>
</tr>
<tr>
<td>Study Time</td>
<td></td>
</tr>
</tbody>
</table>

Name: ______________
Problem S4 (Signals and Systems)

For the circuit of Problem S3, find the branch voltages and branch currents using the loop method. Of course, your answer should agree with that of Problem S3.
Problem S5 (Signals and Systems)

Consider the circuit below:

![Circuit Diagram]

where

\[R_3 = 2 \, \Omega, \quad R_4 = 2 \, \Omega, \quad R_5 = 8 \, \Omega, \quad R_6 = 8 \, \Omega, \quad R_7 = 3 \, \Omega \]

\[V_1 = 10 \, V, \quad V_2 = 5 \, V \]

Find the output voltage, \(v_o \), using the node method. Note that because the two voltage sources do not have a common terminal, it is not possible to choose a ground node that is the negative terminal of both. As a result, one of the voltage sources will be “floating,” that is, it will not have a terminal at ground potential. Therefore, the node voltages will be unknown, not known. This is a problem, because application of KCL at a node of a voltage source will include the current through the voltage source. However, the constitutive law of the source gives no information about the current.

To eliminate this problem, you can use the “supernode” method. In this case, the supernode includes both nodes connected to \(V_2 \). Label the negative terminal as, say, \(e_1 \). Then the positive node should be labeled as \(e_1 + V_2 \). KCL applied at each of these nodes will contain the unknown current \(i_2 \). By adding the equations together, this unknown current is automatically eliminated. In essence, we treat the two nodes as a single node (a “supernode”), and sum all the current flowing out of the super node.

Note: Feel free to use the loop method to check your answer, but use the node method for your final answer.
Find the Thevinin and Norton equivalent circuits for the circuits below. Hint: Add a test current to the terminals, and then determine the voltage at the terminals as a function of the test current. You should find that the terminal voltage can be expressed as

\[v = V_T + R_T I_{\text{test}} \]

1. \[\begin{align*}
R_1 & = 2 \ \Omega, \\
R_2 & = 4 \ \Omega, \\
R_3 & = 3 \ \Omega, \\
V_4 & = 12 \ \text{V}
\end{align*} \]

where

2. \[\begin{align*}
R_1 & = 1 \ \Omega, \\
R_2 & = 3 \ \Omega, \\
R_3 & = 3 \ \Omega, \\
R_4 & = 1 \ \Omega, \\
I_5 & = 8 \ \text{A}
\end{align*} \]
Problem Set 5

CP 11) Define an Ada95 record with four fields: [5 points]

a. Aircraft_ID of type integer

b. Airline of enumeration type with possible values {United, Delta, SouthWest, JetBlue, American}

c. Direction of type character

d. Aircraft_Type of type integer

CP 12) [35 points]

Write an Ada95 program to:

i. Define four arrays with 5 elements each of types Aircraft_ID, Airline, Direction and Aircraft_Type

ii. Accept user input for 5 aircraft as shown in Figure 1 below.

iii. Sort the elements based on Aircraft_ID array as shown in Figure 2.

iv. Display the sorted arrays to the user

<table>
<thead>
<tr>
<th>Aircraft_ID</th>
<th>Airline</th>
<th>Direction</th>
<th>Aircraft_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Delta</td>
<td>N</td>
<td>777</td>
</tr>
<tr>
<td>4</td>
<td>American</td>
<td>S</td>
<td>737</td>
</tr>
<tr>
<td>6</td>
<td>JetBlue</td>
<td>E</td>
<td>767</td>
</tr>
<tr>
<td>3</td>
<td>SouthWest</td>
<td>W</td>
<td>737</td>
</tr>
<tr>
<td>1</td>
<td>United</td>
<td>N</td>
<td>747</td>
</tr>
</tbody>
</table>

Figure 1: Four User Input Arrays

<table>
<thead>
<tr>
<th>Aircraft_ID</th>
<th>Airline</th>
<th>Direction</th>
<th>Aircraft_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United</td>
<td>N</td>
<td>747</td>
</tr>
<tr>
<td>3</td>
<td>SouthWest</td>
<td>W</td>
<td>737</td>
</tr>
<tr>
<td>4</td>
<td>American</td>
<td>S</td>
<td>737</td>
</tr>
<tr>
<td>6</td>
<td>JetBlue</td>
<td>E</td>
<td>767</td>
</tr>
<tr>
<td>10</td>
<td>Delta</td>
<td>N</td>
<td>777</td>
</tr>
</tbody>
</table>

Figure 2: Sorted Arrays
Figure 2: Sorted Arrays Displayed to the User

Turn in a **hard copy** of your **code listing** and an **electronic copy** of your **code**.
a. Define your own package, with the type definition of an array with ten aircraft records (as defined in question 1 above), and four functions/procedures to:

 i. Sort the array in ascending order based on Aircraft_ID.
 ii. Display the contents of records in the array
 iii. Read in aircraft information into the array based on user input.
 iv. Read in aircraft information into the array from an input file called aircraft_record_input.txt

b. Write a test program that uses your package to:

 i. Create an array with 5 records input by the user, and 5 records read in from the file called aircraft_record_input.txt
 ii. Sort the records based on the Aircraft_Id
 iii. Display each record of the array as shown in Figure 3.

 Aircraft_ID: 1
 Airline: United
 Direction: N
 Aircraft_Type: 747
 ...
 ...
 Aircraft_ID: 10
 Airline: Delta
 Direction: N
 Aircraft_Type: 777

Figure 3. Sorted Records Displayed to User
iv. Store the contents of a sorted array into a file called
 sorted_aircraft_records.txt
 Turn in a **hard copy** of your **code listing** and an **electronic copy** of your **code**.