
Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

Unified Engineering
Fall 2004

Problem Set #3 Solutions

C&P PSET 3 Solutions

1. 12 points
a. Convert 2710 from decimal into binary and hexadecimal notation

The conversion from decimal to binary is carried out using the following
algorithm:

v Divide the value by 2 and record the remainder
v As long as the quotient obtained is not 0, continue to divide the newest

quotient by 2 and record the remainder
v Now that a quotient of 0 has been obtained, the binary representation

of the original value consists of the remainders listed from right to left
in the order they were recorded

(i) 2710 is converted into binary as shown below:

Number Remainder
27 1
13 1
6 0
3 1
1

2710 = 110112

Similarly, the conversion from decimal to hexadecimal is carried out by
dividing by 16.

(ii) 2710 is converted into hexadecimal as shown below:

Number Remainder
27 1
11

2710 = 1B16

b. Convert FA16 from hexadecimal into binary and decimal

The conversion from hexadecimal to binary is carried out as follows:
v Convert each hexadecimal digit into the equivalent nibble (group of 4

bits)
v The final binary representation is a composition of the individual

nibbles going from left to right of the most significant hexadecimal
digit.

(i) FA16 can be represented in binary as:

F16 = 11112

A16 = 10102

FA16 = 111110102

The conversion from hexadecimal to decimal is carried out as follows:
v Convert each hexadecimal digit into the equivalent decimal digit
v Multiply each equivalent decimal digit by 16(position-1)

(ii) FA16 can be represented in decimal as:

 F16 = 1510

A16 = 1010

FA16 = 1510*16(2-1) + 1010*16(1-1)

= 25010

FA16 = 25010

c. Convert 101110012 from binary into decimal and hexadecimal
The conversion from binary to decimal is carried out as follows:
v Multiply each bit value by 2(position-1)

(i) 101110012 can be represented in decimal as:

101110012 = 1*27 + 1*25+1*24+1*23+1
= 128 + 32 + 16 + 8 + 1
= 18510

101110012 = 18510

The conversion from binary to hexadecimal is carried out as follows:
v Start from right to left
v Break bit patterns into nibbles
v Add 0’s to the front to complete the leftmost nibble
v Convert the nibbles into hexadecimal symbols

(ii) 101110012 can be represented in hexadecimal as:

101110012 = 1011 1001
= B916

101110012 = B916

2. 35 points

a. Write an algorithm to carry out integer subtraction using only addition.
Assume that the numbers are stored in num1 and num2, and the operation to
be performed is num1-num2.

Precondtions – Legal 8 bit integers are stored in locations num1 and num2

Inputs – None

Outputs – Display the result of the subtraction to the user

Postconditions – Result of the subtraction operation stored in the location
sum

Algorithm

1. Read in the number from num1 and store it in sum
2. Compute the 2’s complement of num2 as follows:

a. Compute the 1’s complement by computing the negation of num2
b. Add 1 to the result

3. Add the 2’s complement to num2 to sum
4. Display the result of the subtraction to the user
5. Store the result in sum

b. Implement your algorithm as a Pep7 program. Turn in a hard copy of your
assembly code and an electronic copy of your code

;Program to carry out subtraction using addition
;Programmer : Jane B
;Date Created:September 22,2004
;Date Last Modified: September 27, 2004

 BR Main; branch to location main

num1: .BYTE d#1 ; byte to store num1
num2: .BYTE d#1 ; byte to store num2
sum1: .BYTE d#1 ; byte to store result of the subtraction
sum2: .BYTE d#1 ; byte to capture any overflow information

Main: LOADA h#0020, I ; load h#0020 into accumulator
STBYTA num1, d ; store h#20 into location num1

LOADA h#0030, I ; load h#0030 into accumulator
STBYTA num2, d ; store h#30 into num2

NOTA ; negate num2 to find the 1s complement
ADDA d#1, i ; find the two's complment by adding 1

STOREA sum1, d ; store the result of the negation into sum

LOADA h#0000, I ; initialize the accumulator to 0
LDBYTA num1,d ; load num1 into accumulator

ADDA sum1, d ; add the 2s complement to the accumulator

STOREA sum1,d ; store the result of the negation into input

DECO sum1,d ; display the result of the negation

STOP ; stop the processing

 .END ; end of the program

c. Implement your algorithm as an Ada95 program. Turn in a hard copy of your
code listing and an electronic copy of your code.

 1. --
 2. --| Program to demonstrate 2s complement using Ada95
 3. --| Programmer: Joe B
 4. --| Date Created: September 20, 2004
 5. --| Date Last Modified : September 21,2004
 6. --
 7.
 8.
 9. with Ada.Text_Io;
 10.
 11. procedure Demo_2_Complement is
 12. type Byte is mod 256;
 13.
 14. Num1 : Byte := 128;
 15. Num2 : Byte := 10;
 16.
 17. Sum : Byte;
 18.
 19. begin
 20. --convert num2 into its 2's complement
 21. -- find the 1's complment by negating num2
 22. Sum := not Num2;
 23. -- find the 2's complement by adding 1 to the 1's complement
 24. Sum := Sum+1;
 25.
 26. -- compute the subtraction by adding num1 to sum
 27. Sum := Sum + Num1;
 28.
 29. Ada.Text_Io.Put("The result of the subtraction operation is : ");
 30. if Sum > 127 then
 31. --then the result of the subtraction is negative
 32. Ada.Text_Io.Put("-");
 33. Ada.Text_Io.Put(Byte'Image(255-Sum+1));
 34. else
 35. Ada.Text_Io.Put_Line(Byte'Image(Sum));
 36. end if;
 37.
 38. end Demo_2_Complement;
 39.
 40.
 41.

