

Unified Engineering Fall 2004

Problem Set \# 3 Solutions

UNIFIED ENGINEERING
Problemset*3-Socutioner

3 (M). 1 (a) To draw the tree body diagram, replace the person with the load and the supports with the reaction forces.

Person hare mart of 100 kg .

$$
\begin{aligned}
& w=m g \\
& \operatorname{snvg}=9.8 \mathrm{~m} / \mathrm{g}^{2} \\
& \Rightarrow W=(100 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=980 \mathrm{~N}
\end{aligned}
$$

So:

where: rollerhas aventical reaction pin has avectical and horizontal rereficn person at some location an the x.-clirection.
(b) Find the reactions by applying the equation of equilibrium:

$$
\begin{aligned}
& \sum F_{1}=0 \quad \rightarrow \Rightarrow-H_{2}=0 \\
& \sum F_{3}=0+9 \Rightarrow V_{1}-980 N+V_{2}=0 \\
& \sum_{\text {-about }} M=0 \quad\left(+\Rightarrow-(980 N)+V_{2}(5 m)=0\right. \\
& \begin{array}{c}
\text { (about } \\
\times 1,=0)
\end{array}
\end{aligned}
$$

Third equation yields: $V_{2}=196 a\left(\frac{N}{m}\right)$
use in second equation: $V_{1}=+980 N-196 a\left(\frac{N}{m}\right)$
Summarizing: $V_{1}=980 N-196 a\left(\frac{N}{m}\right)$

$$
\begin{aligned}
& V_{2}=196 a\left(\frac{N}{m}\right) \\
& H_{2}=0
\end{aligned}
$$

(c) If a claus supports replacer a pin, A moment reaction is adthed. Thus the free Body Diagram becomes:

Again go to the three equilibrium equations:

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{t} \Rightarrow-H_{2}=0 \\
& \sum F_{3}=0 H \Rightarrow V_{1}-980 N+V_{2}=0 \\
& \sum_{\text {abe }}=0\left(+\Rightarrow-\left(980 M a+V_{2}(5 m)+M_{2}=0\right.\right. \\
& \text { (about } \\
& x_{1}=0 \text {) }
\end{aligned}
$$

There are four reaction (ionlunouns) ondthree equations (dygreur of freedoms), to this situation is statically indetereninate. We thur cannot determine all the reactions. But, we can use the equations to soy:

$$
\begin{gathered}
H_{2}=0 \\
v_{1}+V_{2}=980 \mathrm{~N} \\
M_{2}=(980 \mathrm{~N}) k-v_{2}(5 \mathrm{~m})
\end{gathered}
$$

$3(M) .2(a)$ In order to draw the free body digran, it is necessary to convert the marses into loads we to gravity:

$$
\begin{aligned}
& \text { EErie }=\underset{\sim}{\operatorname{mass}} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& {[\mathrm{~N}] \quad[\mathrm{kg}]}
\end{aligned}
$$

For the concentrated mods due to the cable transmitting the force form the changing of that mass.

$$
\text { Force }=300 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=2940 \mathrm{~N}
$$

An equation is needed for the dirtizuntion utsond and

The associated tors and resultingtorce. Using the eft side of the bern ar $x,=0$, one can unite:

$$
\text { mass /unit buggth }=f(x,)=d\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right)
$$

where is the maxi mum amount (at $x_{1}=0$) and it foes to zeno at $x_{1}=10 \mathrm{~m}$
(Notr: See solution to Problem Set $\# 2$, Pros/ cen $2(M) .3$ fordetwils ar to haw to derive this)

We know: $\int_{0}^{10 m_{n}} d\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right) d x_{1}=1000 \mathrm{~kg}$

$$
\begin{aligned}
& \left.\Rightarrow d\left(x_{1}-\frac{x_{1}^{2}}{20 \mathrm{~m}}\right)\right]_{0}^{10 \mathrm{~m}}=1000 \mathrm{~kg} \\
& \\
& \quad d(10 \mathrm{~m}-5 \mathrm{~m})=1000 \mathrm{~kg} \Rightarrow d=200 \mathrm{~kg} / \mathrm{m} \\
& \text { So: Fire }=200 \mathrm{~kg} / \mathrm{m} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=1960 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

\Rightarrow dirt giver force of $1960 \mathrm{~N} / \mathrm{m}\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right)$

where: A is the pin support at $x_{1}=0$ with hovizmal and venticulreactions
B is the vollersuppurt at $x_{1}=10 \mathrm{~m}$ nita ventical reaction
C is the pinsuppurt for the pulley with vertical and horizontal resections

It is careful in this problem to split this in to two "subsystems" each with Their on Free Boxy Diggrom. Why? We fave fro structures: The 6 eam and the cable. We "split"thir by replacing the beam/cable connection by a force representing the tension in the cable, T. Thus:

Berm/bar system

Pulley system

(b) For it to be passible to diterminethereactions, the systeen must be statically diterniante (or we weed censtitutiverelations). In this care, that means each of there subsystems must be statically determinate
\rightarrow Beam/barsystem:

$$
\begin{aligned}
& \# \text { of dot }=3 \\
&- \text { lateral in } x_{1} \\
& \text { - lateral in } x_{2} \\
&- \text { rotation in } x_{1}-x_{2} \text { plane } \\
& \text { Iofreacxions }=3 \quad\left(H_{A}, V_{A}, H_{13}\right) \\
&(\# \text { of } \operatorname{dof})=(\# \text { of reactions }) \Rightarrow \text { Statically Determinate }
\end{aligned}
$$

\rightarrow Pulley system
\# of tot = 2

- lateral in x,
- lateral in x_{2}
(Note: A cable is not rigid, so it cannot rotate as a rigid bo dy!')

$$
\begin{aligned}
& \text { \# of reactions }=2\left(+f_{e}, V_{c}\right) \\
& \text { (II of doff })=(\# \text { of reactions) } \Rightarrow \text { statically Determinate }
\end{aligned}
$$

What a bout T?
This is a transmission across the tho systems so there hill bean equation" ar well as "acmes the able....
\rightarrow Beam/barsystem
Take equilibrium:

$$
\begin{align*}
& \sum F_{1}=0 \xrightarrow{\rightarrow} \Rightarrow H_{A}+0.5 T=0 \tag{1}\\
& \sum F_{2}=0 \quad \varphi_{+} \Rightarrow V_{A}-\int_{0}^{10 m} 1960 \frac{N}{m}\left(1-\frac{x_{1}}{10 m}\right) d x_{1} \\
& +0.866 T+V_{B}=0 \tag{2}\\
& \Rightarrow V_{A}+V_{B}+0.866 T-9800 N=0 \tag{z}\\
& \sum M=0 C_{+} \Rightarrow 0.866 T(6 \mathrm{~m})+V_{B}(10 \mathrm{~m}) \\
& \text { (about } \\
& x_{1}=0 \text {) } \\
& -\int_{0}^{10 \mathrm{~m}} 1460 \frac{N}{m}\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right) x_{1} d x_{1}=0 \tag{3}\\
& \left.\Rightarrow 5.196 \mathrm{~T}[\mathrm{~m}]+V_{B}(10 \mathrm{~m})-1960 \frac{\mathrm{~N}}{\mathrm{~m}}\left(\frac{x_{1}{ }^{2}}{2}-\frac{x_{1}{ }^{3}}{30 \mathrm{~m}}\right)\right]_{0}^{10 \mathrm{~m}}=0 \\
& 5.196 \mathrm{~T}[\mathrm{~m})+V_{B}(10 \mathrm{~m})-1960 \frac{\mathrm{~N}}{\mathrm{~m}}\left(16.7 \mathrm{~m}^{2}\right)=0 \\
& \Rightarrow 5.196 T+V_{B}(10)-32.732 N=0 \tag{3}
\end{align*}
$$

\rightarrow Pulley system

$$
\begin{align*}
& \Sigma F_{1}=0 \xrightarrow{+} \Rightarrow A H_{C}-5 T=0 \tag{4}\\
& \sum F_{2}=0+9 \Rightarrow V_{c}-2940 N-0.866 \mathrm{~T}=0 \tag{5}\\
& \sum M=0\left(+\Rightarrow T_{r}-2940 N(r)=0\right. \tag{6}\\
& \text { ping } \\
& \text { where: } r \text { - pulleyrawius }
\end{align*}
$$

Reanrenfing and summarizing the equations:

$$
\begin{align*}
& H_{A}=-0.5 \mathrm{~T} \tag{1}\\
& V_{A}+V_{B}=9800 \mathrm{~N}-0.866 \mathrm{~T} \tag{2}\\
& V_{B}=32.732 \mathrm{~N}-5.196 \mathrm{~T} \tag{3}\\
& H_{C}=0.5 \mathrm{~T} \tag{4}\\
& V_{C}=2940 \mathrm{~N}+0.866 \mathrm{~T} \tag{5}\\
& T=2940 \mathrm{~N}
\end{align*}
$$

$$
(6)^{*}
$$

(*Note: Can alrget this by noxyg that a cabre transmite axial force, so the tesssion in the cable must be equal to the weight harfing at ito end. Cenalso do this by outtiry the conbl- was thends

$$
\tau_{w}^{T} \Rightarrow T=w
$$

Using (6) and knoning T, thiscan be ured in all the otwerequaxions to get the reaction:

$$
\begin{aligned}
& H_{A}=-1470 \mathrm{~N} \\
& V_{B}=1746 \mathrm{~N} \\
& V_{A}=5508 \mathrm{~N} \\
& V_{C}=5486 \mathrm{~N} \\
& H_{C}=5486 \mathrm{~N}
\end{aligned}
$$

(c) If one wants $V_{13}=0$, all the equilibrium equation basically stay the same exapt (3) becornes:

$$
0=V_{B}=32,732 \mathrm{~N}-5.196 \mathrm{~T}
$$

This fiver $T=6300 \mathrm{~N} /$
Recalling that: $T=$ moss $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
gives:

$$
m=643 \mathrm{~kg}
$$

Yes, it can be done.

Note: The reaction is still there, it is just zero. Things just balance at this point.
$3(\mathrm{M}) .3(a)$
Draw the Free Body Bingram:

(b) Determine the reaction forces by applying theequiliborium equations:

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{+} \Rightarrow H_{A}+2000 N=0 \\
& \Rightarrow H_{A}=-2000 \mathrm{~N} \\
& \sum F_{3}=0+i \Rightarrow V_{A}+V_{H}-10,000 N=0 \\
& \sum_{1} M=0 \quad\left(+\Rightarrow V_{+}(20 \mathrm{~m})-10,000 \mathrm{~N}(15 \mathrm{~m})\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{H}=8000 \mathrm{~N}
\end{aligned}
$$

Using this in the second equation

$$
\Rightarrow V_{A}+8000 N-10,000 N=0 \Rightarrow V_{A}=20000
$$

Summarizir:

$$
\begin{aligned}
& V_{A}=2000 \mathrm{~N} \\
& H_{A}=-2000 \mathrm{~N} \\
& V_{H}=8000 \mathrm{~N}
\end{aligned}
$$

(c) YFS! Consider the point D and equilibrium There from the forms form the three bors (BD,DEDF) that connect there:

$F_{D E}$ is the only bar that can curry reatical (x_{3}-direction) load. Sincetheremust be equilibrium at each joint, then $\sum F_{3}=0$ tells us:

$$
F_{D E}=0
$$

(d) Multiple sections can be chosen to beaut in order to determine the load in bar CE by the method of sections. A common choice is to out throughthesection. Thus:

Resolve $F_{B E}$ into umponentsindong x_{1} and x_{3}. The geometry gives an angl of 45°
and: $F_{B E}=F_{B E} \cos \theta=0.707 F_{B F}$

$$
F_{B E_{3}}=F_{B E} \sin \theta=0.707 F_{B E}
$$

Now rpplythe equations of equilibrium:

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{\prime}-2000 \mathrm{~N}+F_{C E}+F_{B E_{1}}+F_{B D}=0 \\
& \sum F_{3}=0+9 \Rightarrow 2000 \mathrm{~N}-F_{B E_{3}}=0 \\
& \Rightarrow F_{B F_{3}}=0.707 F_{B E}=2000 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow F_{B F}=2829 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& A B=\sqrt{2(5 \mathrm{~m})^{2}}=\sqrt{2}(5 \mathrm{~m}) \text { sAMFI. }
\end{aligned}
$$

use the result of $F_{B F}=2829 \mathrm{~N}$ in the enstequation:

$$
\begin{aligned}
-F_{B D} & -2829 \mathrm{~N}(\sqrt{2})=0 \\
& \Rightarrow F_{B D}=-4000 \mathrm{~N}
\end{aligned}
$$

and use these results in the firs t equation:

$$
\begin{gathered}
-2000 \mathrm{~N}+F_{C E}+2000 \mathrm{~N}-4000 \mathrm{~N}=0 \\
\Rightarrow F_{C E}=4000 \mathrm{~N}
\end{gathered}
$$

in $+x$, direction (atensile force)
(e) To check the load in bar $C F$ by the method of joints. choose a joint at a support. Here, A is chosen:

Then apply the tho equations of equilibrium

Note that loads in diagonal bars carlmest be resolved in to eirmponents on the x, ad x_{3} directions. In all cares the barrare at angles of 45° so:

$$
\begin{aligned}
& 0: \\
& x, \text { compment }=\cos \theta(\operatorname{load})=\frac{\sqrt{2}}{2} \operatorname{lonal}=0.707 \operatorname{lod} \\
& x_{3} \text { component }: \sin \theta\left(\operatorname{lua}(1)=\frac{\sqrt{2}}{2} \log ()=0.707 \log \right.
\end{aligned}
$$

For the cnethod of joints, there are two equation of equilibrium (only force, moment cannot bunted)

Here:

$$
\begin{aligned}
& \text { Here } \\
& \sum F_{1}=0 \stackrel{+}{\rightarrow} \Rightarrow-2000 N+F_{A C}+0.707 F_{A B}=0 \\
& \sum F_{3}=0+9 \Rightarrow 2000 N+0.707 F_{A B}=0 \\
& \Rightarrow F_{A B}=-2829 \mathrm{~N}
\end{aligned}
$$

using in the first:

$$
F_{A C}=4000 \mathrm{~N}
$$

Proceed to ...
Joint C :

$$
\Sigma F_{1}=0 \stackrel{\Rightarrow}{C C E}-F_{C A}=0
$$

with $F_{C A}=4000 \mathrm{~N}$
$\Rightarrow F_{C E}=4000 \mathrm{~N}$ cheeks
in the $+x_{1}$ direction
(f) Continue first with the method of

Finalize wite Joint C :

$$
\sum F_{3}-0+\varphi \Rightarrow F_{C B}=0
$$

Now Join tB

$$
\xrightarrow{\phi^{x_{3}}}
$$

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{+} \Rightarrow-0.707 F_{B A}+F_{B D}+0.707 F_{B E}=0 \\
& \sum F_{3}=0+\varphi \Rightarrow-0.707 F_{B A}+F_{B C}-0.707 F_{B E}=0
\end{aligned}
$$

using previous results

$$
F_{B E}=-F_{B A}=2829 \mathrm{~N}
$$

and into Σt, equation:

$$
\begin{aligned}
2000 N+F_{B D}+2000 N & =0 \\
& \Rightarrow F_{B D}=-4000 N
\end{aligned}
$$

Now Joint 0

$$
\begin{aligned}
\sum F_{3}=0+P & \Rightarrow-F_{D F}=0 \\
\sum F_{1}=0 \stackrel{y}{\rightarrow} & \Rightarrow F_{D B}+F_{D F}=0 \\
& \Rightarrow F_{D F}=F_{D B}=-4000 \mathrm{~N}
\end{aligned}
$$

Next Joint F
$x_{3} \xrightarrow{\longrightarrow} x_{1}$

$$
\begin{aligned}
& \sum F_{1}: 0 \Rightarrow \\
& \Rightarrow-F_{E C}+F_{E G}-0.707 F_{F B}+0.707 F_{E F}=0 \\
& \sum F_{3}=0+9 \Rightarrow 0.707 F_{F B}+F_{E D}+0.707 F_{E F}=0 \\
& \Rightarrow-F_{E B}=F_{E F}=-2829 \mathrm{~N}
\end{aligned}
$$

usingin $\sum F_{1}$ gives:

$$
F_{E G}=8000 \mathrm{~N}
$$

Next Joint F

$$
\begin{aligned}
\Sigma F_{1}=0 \xrightarrow{t} \Rightarrow & -0.707 F_{F E}-F_{F D}+2000 \mathrm{~N}+0.707 F_{F H}=0 \\
& \Rightarrow-0.707 F_{F F}+0.707 F_{F H}=-6000 \mathrm{~N} \\
\Sigma F_{3}=0+P \Rightarrow & -0.707 F_{F E}-F_{F G}-0.707 F_{F H}=0
\end{aligned}
$$

The $\sum F_{1}-0$ gives: $0.707 F_{F-1}=-8000 \mathrm{~N}$

$$
\Rightarrow F_{F_{H}}=-11,315 \mathrm{~N}
$$

asing in $\sum \mathrm{F}_{3}$ fiver:

$$
F_{F G}=10,000 \mathrm{~N}
$$

and to Joint G

$$
\begin{aligned}
\sum F_{1}=0 \xrightarrow{t} \Rightarrow-F_{G E} & +F_{G H}=0 \\
& \Rightarrow F_{G H}=F_{G E}=8000 \mathrm{~N} \\
\sum F_{3}=0+\phi \Rightarrow F_{G F} & -(0,000 N: 0 \quad \sim \text { cherks }
\end{aligned}
$$

(NoTF: with wethod of joints conchale resulte)

Cheak at Juint A :

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{+} \Rightarrow-.707 F_{H F}-F_{H G}=0 \\
& \Sigma F_{3}=0+9 \Rightarrow 0.707 F_{H F}+8000 \mathrm{~N}=0
\end{aligned}
$$

\checkmark Cherks

Summarize by chawing the truer and placing the ban load above earth ban with (x) tension; and (-) compression

If do by method ot sections, fo through each section....

2000 N

$$
\begin{aligned}
& \sum F_{1}=0 \xrightarrow{+} F_{A C}+F_{A B},-2000 \lambda=0 \\
& \sum F_{3}=0+1 \Rightarrow 0.707 F_{A B}+2000 N=0 \\
& \Rightarrow F_{A B}=-2829 \mathrm{~N}
\end{aligned}
$$

and this results in

$$
F_{A C}=4000 \mathrm{~N}
$$

(v - sane arbetore)

We alreachy had done the uext section cand found $F_{B E}, f_{C E}$ and $F_{D E}$ (surseetion (d))

Furthermore in section (c) we found $F_{D F}=0$ we can ufe the vaune arfum ent to show $F_{C B}=0$.

Moreto the next "bay/section" ($D F F G$)

$$
\begin{aligned}
& \sum F_{1}=0 \stackrel{m}{ } \Rightarrow-2000 \mathrm{~N}+F_{D F}+0.707 F_{E F}+F_{F G}=0 \\
& \sum F_{3}=0+P \Rightarrow 2000 \mathrm{~N}+0.707 F_{E F}=0 \\
& \Rightarrow F_{E F}=-2829 \mathrm{~N} \\
& \sum M_{A}=0 \quad+ \Rightarrow F_{D F}(5 \mathrm{~m})=0.707 F_{E F}(10 \mathrm{~m})=0 \\
& \Rightarrow F_{D F}=-4000 \mathrm{~N}
\end{aligned}
$$

Use in $\Sigma F_{1}=0$

$$
\Rightarrow F_{E G}=8000 \mathrm{~N}
$$

For FFH and $F_{G H}$, out arount H :

$$
\begin{aligned}
& \sum F_{1}=0 \Rightarrow \Rightarrow-F_{H G}-0.707 F_{H F}=0 \\
& \sum F_{3}=0+1 \Rightarrow 8000 \mathrm{~N}+0.707 F_{H F}=0 \\
& \Rightarrow F_{H F}=-11.315 \mathrm{~N} \\
& \text { usingi } \sum F_{1} \Rightarrow F_{H G}=8000 \mathrm{~N}
\end{aligned}
$$

finally cut to get $F_{F G}$

$$
\begin{gathered}
\sum F_{3}: 0+P \Rightarrow F_{G F}+0.707 F_{H F}+8000 \mathrm{~N}=10,000 \mathrm{~N}=0 \\
\Rightarrow F_{G F}=(0,000 \mathrm{~N}
\end{gathered}
$$

All the saune as betore (resollts in same dirgram)

C\&P PSET 3 Solutions

1.

12 points

a. Convert 27_{10} from decimal into binary and hexadecimal notation

The conversion from decimal to binary is carried out using the following algorithm:

* Divide the value by 2 and record the remainder
* As long as the quotient obtained is not 0 , continue to divide the newest quotient by 2 and record the remainder
* Now that a quotient of 0 has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded
(i) 27_{10} is converted into binary as shown below:

Number	Remainder
27	1
13	1
6	0
3	1
1	

$$
27_{10}=11011_{2}
$$

Similarly, the conversion from decimal to hexadecimal is carried out by dividing by 16 .
(ii) 27_{10} is converted into hexadecimal as shown below:

Number	Remainder
27	1
11	

$$
27_{10}=1 B_{16}
$$

b. Convert FA_{16} from hexadecimal into binary and decimal

The conversion from hexadecimal to binary is carried out as follows:

* Convert each hexadecimal digit into the equivalent nibble (group of 4 bits)
* The final binary representation is a composition of the individual nibbles going from left to right of the most significant hexadecimal digit.
(i) FA_{16} can be represented in binary as:

$$
\begin{aligned}
& \mathrm{F}_{16}=1111_{2} \\
& \mathrm{~A}_{16}=1010_{2}
\end{aligned}
$$

$$
\mathrm{FA}_{16}=\mathbf{1 1 1 1 1 0 1 0}_{2}
$$

The conversion from hexadecimal to decimal is carried out as follows:

* Convert each hexadecimal digit into the equivalent decimal digit
* Multiply each equivalent decimal digit by $16^{(\text {position-1) }}$
(ii) FA_{16} can be represented in decimal as:

$$
\begin{aligned}
\mathrm{F}_{16}= & 15_{10} \\
\mathrm{~A}_{16}= & 10_{10} \\
\mathrm{FA}_{16} & = \\
& =15_{10} * 16^{(2-1)}+10_{10} * 16^{(1-1)} \\
& 250_{10}
\end{aligned}
$$

$$
F_{16}=250_{10}
$$

c. Convert 10111001_{2} from binary into decimal and hexadecimal

The conversion from binary to decimal is carried out as follows:

* Multiply each bit value by $2^{(\text {position-1) }}$
(i) 10111001_{2} can be represented in decimal as:

$$
\begin{aligned}
10111001_{2}= & 1 * 2^{7}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 \\
= & 128+32+16+8+1 \\
= & 185_{10} \\
& \mathbf{1 0 1 1 1 0 0 1}_{\mathbf{2}}=\mathbf{1 8 5}_{\mathbf{1 0}}
\end{aligned}
$$

The conversion from binary to hexadecimal is carried out as follows:

* Start from right to left
* Break bit patterns into nibbles
* Add 0's to the front to complete the leftmost nibble
* Convert the nibbles into hexadecimal symbols
(ii) 10111001_{2} can be represented in hexadecimal as:

$$
\begin{aligned}
10111001_{2} & = \\
& =10111001 \\
& \text { B9 } 9_{16}
\end{aligned}
$$

a. Write an algorithm to carry out integer subtraction using only addition. Assume that the numbers are stored in num1 and num2, and the operation to be performed is num1-num2.

Precondtions - Legal 8 bit integers are stored in locations num1 and num 2
Inputs - None
Outputs - Display the result of the subtraction to the user
Postconditions - Result of the subtraction operation stored in the location sum

Algorithm

1. Read in the number from num1 and store it in sum
2. Compute the 2 's complement of num 2 as follows:
a. Compute the 1 's complement by computing the negation of num 2
b. Add 1 to the result
3. Add the 2 's complement to num 2 to sum
4. Display the result of the subtraction to the user
5. Store the result in sum
b. Implement your algorithm as a Pep7 program. Turn in a hard copy of your assembly code and an electronic copy of your code
```
;Program to carry out subtraction using addition
;Programmer : Jane B
;Date Created:September 22,2004
;Date Last Modified: September 27, 2004
    BR Main; branch to location main
num1: . BYTE 
Main: LOADA h#0020, I ; load h#0020 into accumulator
    STBYTA num1, d ; store h#20 into location num1
    LOADA h#0030, I ; load h#0030 into accumulator
    STBYTA num2, d ; store h#30 into num2
    NOTA ; negate num2 to find the 1s complement
    ADDA d#1, i ; find the two's complment by adding 1
    STOREA sum1, d ; store the result of the negation into sum
    LOADA h#0000, I ; initialize the accumulator to 0
    LDBYTA num1,d ; load num1 into accumulator
    ADDA sum1, d ; add the 2s complement to the accumulator
    STOREA sum1,d ; store the result of the negation into input
    DECO sum1,d ; display the result of the negation
    STOP ; stop the processing
    .END ; end of the program
```

c. Implement your algorithm as an Ada95 program. Turn in a hard copy of your code listing and an electronic copy of your code.
1.
2. --| Program to demonstrate 2s complement using Ada95
3. --| Programmer: Joe B
4. --| Date Created: September 20, 2004
5. --| Date Last Modified : September 21,2004
6.
7.
8.
9. with Ada.Text_Io;
10.
11. procedure Demo_2_Complement is
type Byte is mod 256 ;
13.
14. Num1 : Byte $:=128$;
15. Num2 : Byte :=10;
16.
17. Sum : Byte;
18.
19. begin
20. --convert num 2 into its 2 's complement
21. -- find the 1 's complment by negating num 2
22. Sum := not Num2;
23. -- find the 2 's complement by adding 1 to the 1 's complement
24. Sum :=Sum +1 ;
25.
26. -- compute the subtraction by adding num1 to sum
27. Sum := Sum + Num1;
28.
29. Ada.Text_Io.Put("The result of the subtraction operation is : ");
30. if Sum > 127 then
31. --then the result of the subtraction is negative
32. Ada.Text_Io.Put("-");

Ada.Text_Io.Put(Byte'Image(255-Sum+1));
else
Ada.Text_Io.Put_Line(Byte'Image(Sum)); end if;
37.
38. end Demo_2_Complement;
39.
40.
41.

