

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139

Unified Engineering Fall 2004

Problem Set \#7
Solutions

Solutions to T4 BY WAltz
a)

b) initial conditions

$$
\begin{aligned}
v_{1}=1 \mathrm{~m}^{3} / \mathrm{kg}, \quad P_{1}=100 \mathrm{kPa} \quad \therefore \quad & T_{1}
\end{aligned}=348.4 \mathrm{~K} .
$$ by ideal gas law

1)"isobaric

$$
\begin{array}{ll}
c & p=\text { const } \quad p_{1}=p_{2}=10 k \mathrm{k} P_{a} \\
& r_{2}=0.5 \mathrm{~m}^{3} / \mathrm{kg} \\
\therefore & T_{2}=174.2 \mathrm{~K} \text { by ideal gas law }
\end{array}
$$

2) isothermal $T=$ const $T_{1}=T_{2}=348.4 \mathrm{~K}$

$$
\begin{array}{ll}
& V_{2}=0.5 \mathrm{va}^{3} / \mathrm{kg} \\
\therefore & P_{2}=200 \mathrm{kPa} \text { by ideal gas law }
\end{array}
$$

3) gs adiabatic $p V^{\gamma}=$ const $\quad t=1.4$

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{r-1}=(2)^{0.4}=1.32 \Rightarrow T_{2}=459.7 \mathrm{~K} \\
& \frac{P_{2}}{p_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{r / 121}=2.64 \quad \therefore p_{2}=264 \mathrm{kPa}
\end{aligned}
$$

c) FOR EACH Process calculate work done by sysizM !े HEAT ADDED TO SYSTEM

1) ISOBARKC

$$
\begin{aligned}
& \omega=p \Delta v \\
& \omega=100 \mathrm{kPa}\left(0.5 \mathrm{~m}^{3} / \mathrm{kg}-1.0 \mathrm{~m}^{3} / \mathrm{kg}\right)=3 \\
& \omega=-50 \mathrm{~kJ} / \mathrm{kg} \quad \text { (compression) }
\end{aligned}
$$

$$
\begin{aligned}
\text { 1 } \frac{s^{t}}{\text { Law: }} \Delta u & =q-\omega \\
\therefore \quad q & =\Delta u+w=C_{v}\left(T_{2}-T_{1}\right)+\omega \\
& =7165(174.2-348.4)+(-50,000) \\
& =-175 \mathrm{~kJ} / \mathrm{kg} \quad \text { (heat remedial) }
\end{aligned}
$$

2) ISOTHERMAL

$$
\begin{aligned}
& \begin{array}{l}
\omega=R T \ln \left(\frac{v_{2}}{v_{1}}\right)=287.348 .4 \ln (0.5) \\
\omega=-69 \mathrm{~kJ} / \mathrm{kg} \quad \\
\text { (compression) } \\
\text { Law } \Delta u=q-\omega \\
\text { so } q=\omega \\
q=-69=C_{v} \Delta T=0 \\
q J / \mathrm{kg} \quad
\end{array} \quad \begin{array}{l}
\text { Cheat removal }
\end{array}
\end{aligned}
$$

3) ADABATLC $\Delta u=\not \sigma^{-\omega} \quad q=0$

$$
\begin{array}{r}
\therefore \omega=-\Delta u=-C_{v}\left(T_{2}-T_{1}\right)=-76.5(459.7-348) \\
\omega=-80 \mathrm{~kJ} / \mathrm{kg}(\text { complexion) })
\end{array}
$$

d) Enthalpy change for each process

1) BOBARIC

$$
\Delta h=1003.5(174.2-348,4)=-180 \mathrm{~kJ} / \mathrm{kg}
$$

2) ISOTHERMAL

$$
\Delta_{h}=0
$$

3) $A D I A B A T I C$

$$
\Delta h=1003.5(459.7-348.4)=1(2 \mathrm{~kJ} / \mathrm{kg}
$$

SOLUTIONS TO TS BY WAITE
a) All weights removed instantaneously

Pinitial = 4 atm, $T_{i}=300 \mathrm{~K}$

$$
V_{i}=\frac{287.300}{405.3 \mathrm{kPa}}=0.21 \mathrm{~m}^{3} / \mathrm{kg}
$$

WE KNJW Prince = late BUT WE DO NOT KNOW T_{f} OR V_{f}.

* note that we expect $T_{f}<T_{i}$ SINCE IT IS A THERMALLCY-INNLABM (ADIABATIC) CYUNDER AND WE ARE GETTING WORK OUT SO $\triangle U$ SHOULD BE NEGATIVE.
consider $1^{\text {st }}$ Law for adiabatic process:
$\Delta u=\mathscr{P}_{f}^{0}-\omega$ so $C_{v} \Delta T=-\operatorname{Pext} \Delta V$
$C_{V}\left(T_{f}-T_{i}\right)=-\operatorname{pext}\left(V_{f}-V_{i}\right)$
Lethal gas: $\rho_{f} V_{f}=R T_{f}$
$V_{f}=\frac{R T_{f}}{P_{f}} \quad C_{V}\left(T_{f}-T_{i}\right)=-\operatorname{pext}^{\left(\frac{R T_{f}}{P_{f}}-V_{i}\right)}$
at THE FINAL STATE $p_{f}=$ Peat (it comes to themadynamic
so $\quad C_{v} T_{f}-C_{v} T_{i}=-R T_{f}+$ peat V_{i}

$$
\begin{aligned}
\left(C_{v}+R\right) T_{f} & =P \operatorname{Pext} V_{i}+C_{v} T_{i} \\
T_{f} & =\frac{P \operatorname{ext} V_{i}+C_{v} T_{i}}{C_{r}+R}
\end{aligned}
$$

Prog in some numbers

$$
\begin{aligned}
& T_{f}=\frac{(101325)(0.21)+(716.5)(300)}{716.5+287}=235.4 \mathrm{~K} \\
& P_{f}=P_{\text {ext }}=101325 \mathrm{~N} / \mathrm{m}^{2} \\
& P v=R T \Rightarrow \quad v_{f}=0.67 \mathrm{~m}^{3} / \mathrm{kg} \\
& \Delta u=-\omega \\
& \begin{array}{l}
\omega=-C_{v}(235.4-300)=+46.3 \mathrm{~kJ} / \mathrm{kg} \\
\text { wak by system }
\end{array}
\end{aligned}
$$

b) Two step process (expect more work out of system!)

* Define subscript " m " as middle condition (Hz weight removed use same equations

$$
\begin{aligned}
& T_{m}=\frac{P_{\text {ext } t_{\Phi}} V_{i}+C_{v} T_{i}}{C_{v}+R}=\frac{253.312 \cdot 0.21+716.5 .300}{716.5+287}=267.2 \mathrm{~K} \\
& P_{m}=2533.12 \mathrm{~N} / \mathrm{m}^{2} \\
& V_{m}=0.30 \mathrm{~m}^{3} / \mathrm{kg} \quad W_{\mathbb{k}}=23.5 \mathrm{~kJ} / \mathrm{kg} \\
& T_{f}=\frac{P_{\text {ext }}}{} V_{m}+C_{v} T_{m} \\
& C_{v}+R
\end{aligned}=\frac{101325 \cdot 0.30+716.5 .267 .2}{716.5+287}
$$

$$
\begin{aligned}
& T_{f}=221 \mathrm{~K}, \quad P_{f}=101325 \mathrm{~Pa}, V_{f}=0.63 \mathrm{~m}^{3} / \mathrm{kg} \\
& \omega_{E}=-716.5(221-267.2)=33.1 \mathrm{~kJ} / \mathrm{kg} \\
& \omega_{\text {total }}=\omega_{00}+\omega_{\varepsilon g}=56.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

c) (Quasi-static provers (expect the most work)

$$
\begin{aligned}
& \text { adiabatic } \\
& P v^{\gamma}=\text { cost. } \quad \frac{T_{f}}{T_{i}}=\left(\frac{P_{f}}{P_{i}}\right)^{\gamma-1 / \gamma}=\left(\frac{1}{4}\right)^{0.4 / 1.4} \\
& \therefore T_{f}=202 \mathrm{~K} \\
& =0.673 \\
& P_{f}=101325 \mathrm{~Pa} \\
& V_{f}=0.572 \mathrm{~m}^{3} / \mathrm{kg} \\
& \Delta u=\not \varnothing^{\circ 0}-\omega \quad C_{v} \Delta T=-\omega \\
& \omega=-716.5(202-300)=70.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

MESSAGES: (1) THE AMOONT OF WORK EXTRATEI DEPENd ON PATH
(2) In calculating work for non-Guasi-Statk Processes, NEED TO USE Peat.

(3) THE CIOSER WE APPPGACH A GUASI-STATIC Process, THe more work we get OUT OF THE SYSTEM. THEREFORE IN DESIGNING AN ENGINE WE WANT TO MIT NGN-QUASI-STATC PROCESSES TO EVERY EXTENT PoSSIBLE.
we get the most area under the curve

SOLUTIONS TO TS BY WAITE

a) Leg (1)-(D): ADIABATIC COMPRESSION $Q=0 \quad W \neq(-)$

LEG (2)-(3): ISOTHERMAL EXPANSION

$$
\begin{aligned}
S^{0}=Q-W \quad \text { so } Q=W \quad W & \Rightarrow(t) \\
\therefore Q & \Rightarrow(t)
\end{aligned}
$$

LEG (3)-(1): CONSTANT VOLUME HEAT EXTRACTION

$$
W=0, Q \Rightarrow(-)
$$

b) LEG (1)-(2)

$$
\begin{aligned}
& \Delta u=\not q^{0}-\omega \quad C_{v} \Delta T=\Delta u=-\omega \\
& \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=(8)^{0.4}=2.3 \\
& T_{1}=300 \mathrm{~K} \text { so } T_{2}=690 \mathrm{~K} \\
& \Delta u=716.5(690-300)=280 \mathrm{~kJ} / \mathrm{kg} \\
& \omega=-280 \mathrm{~kJ} / \mathrm{kg} \\
& \phi=0 \\
& \Delta h=C_{p} \Delta T=391 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

LEG (2)-(3) ISOTHERMAL $\quad \operatorname{Jan}^{80}=8-\omega$

$$
\begin{aligned}
& q=\omega \\
& \omega=R T \ln \left(\frac{v_{2}}{v_{1}}\right)=287(690) \ln (8) \\
& {\left[\begin{array}{ll}
\omega & =412 \mathrm{~kJ} / \mathrm{kg} \\
\Delta u & =0 \\
\Delta h & =0 \\
Q & =412 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right.}
\end{aligned}
$$

LEG (3) -(1) CONST. VQLUME

$$
\left\{\begin{array}{l}
w=0 \quad \Delta u=q \quad C_{v} \Delta T=q \\
q=716.5(300-690)=-\quad \mathrm{kJ} / \mathrm{kg} \\
\Delta h=C_{p} \Delta T=1003.5(300-690)=-391 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right.
$$

c) NET WORK

$$
\begin{aligned}
W_{\text {cyle }} & =W_{0-2)}+W_{\text {(2)- }}+W_{\text {(5) }} \\
& =-280+412+0=132 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

NOTE FOR CYCLE, $\left.\omega_{\text {cyck }}=q_{\text {cycte }}=q_{000}+q_{000}+q_{00-0}\right]$

$$
\left.\begin{array}{l}
=D+412-280 \\
=132 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right]
$$

d) THERMA EFFICIENCY $=\frac{\text { WHAT YOUGCT }}{\text { WHAT YOUPAYFIR }}=\frac{\text { NET WORK }}{\text { HEAT IN }}$

$$
\eta_{T *}=\frac{132 \mathrm{~kJ} / \mathrm{kg}}{412 \mathrm{~kJ} / \mathrm{kg}}=32 \%
$$

Unifies Engniemarna Problem S io Solutions Fall 2004

$$
\begin{aligned}
& L_{1}=1 \mathrm{H} \\
& L_{2}=1 \mathrm{H} \\
& R_{3}=1 \Omega \\
& R_{4}=1 \Omega \\
& R_{5}=\frac{1}{2} \Omega
\end{aligned}
$$

Apply node Method at e_{1} 玄 e_{2} ：

$$
\begin{array}{ll}
e_{1}: \quad i_{1}+\left(G_{3}+G_{5}\right) e_{1}-G_{5} e_{2}=0 \\
e_{2}: \quad & i_{2}-G_{5} e_{1}+\left(G_{4}+G_{5}\right) e_{2}=0
\end{array}
$$

ASSUIME EXPONENTIAL SOLUTIONS 育 WRITE i_{1} 车 i_{2} in terms of impedances：

$$
\begin{aligned}
& \frac{1}{L_{1} S} E_{1}+\left(G_{3}+G_{5}\right) E_{1}-G_{5} E_{2}=0 \\
& \frac{1}{L_{2} S} E_{2}-G_{5} E_{1}+\left(G_{4}+G_{15}\right) E_{2}=0
\end{aligned}
$$

Plug in values and write in form M / s ）$\underline{E}=\underline{0}$

$$
\left[\begin{array}{cc}
3+\frac{1}{s} & -2 \\
-2 & 3+\frac{1}{s}
\end{array}\right]\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right]=0
$$

Solve for characteristic values using $\operatorname{det}(M(S)$ ）

$$
\begin{aligned}
& \left(3+\frac{1}{s}\right)\left(3+\frac{1}{5}\right)-4=0 \\
& 9+\frac{6}{s}+\frac{1}{s^{2}}-4=0 \\
& 5 s^{2}+6 s+1=0 \\
& \therefore s=-1 \text { and }-\frac{1}{5}
\end{aligned}
$$

Find characteristic vector e for each characteristic value

NOW USE CONSTITUTIVE LAW FORR inIOMCTOR TO FIND $i_{1}(t) \frac{1}{4} i_{2}(t)$

$$
\begin{aligned}
& v(t)=L \frac{d i(t)}{d t} \\
& i(t)=\frac{1}{L} \int v(t) d t
\end{aligned}
$$

$$
\operatorname{Sin} C E L_{1} \frac{k}{4} L_{2}=1 H \text {, }
$$

$$
i_{1}(t)=-a e^{-t}-5 b e^{-\frac{1}{5} t}
$$

$$
i_{2}(t)=-a e^{-t}+5 b e^{-\frac{1}{5} t}
$$

USE INITIAL CONDITIONS to SOLVE FOR a 娄 b
$i_{1}(0)=10 \mathrm{~A} \quad i_{2}(t)=0 \mathrm{~A}$

$$
10=-a-5 b \quad 0=-a+5 b
$$

$$
10=-5 b-5 b \& a=5 b
$$

$$
10=-10 b
$$

$$
b=-1 \longrightarrow a=-5
$$

$$
\therefore \quad \begin{aligned}
& i_{1}(t)=5 e^{-t}+5 e^{-\frac{1}{5} t} \\
& i_{2}(t)=5 e^{-t}-5 e^{-\frac{1}{5} t}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{S_{1}=-1} \quad M(-1)=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
& M(s) E=0 \Rightarrow E=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \underline{S_{2}=\frac{-1}{5}} \quad M\left(\frac{-1}{5}\right)=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right] \\
& M(s) E=0 \Rightarrow E=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& \text { so } e(t)=a\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-1 t}+b\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-\frac{1}{5} t}
\end{aligned}
$$

Unified Engineering Problem SII solutions Fall 2004

$$
\begin{aligned}
& C_{1}=\frac{1}{4} F \\
& R_{2}=4 \Omega \\
& R_{3}=4 \Omega \\
& R_{4}=1 \Omega \\
& L_{5}=1 \mathrm{H}
\end{aligned}
$$

APPLY NODE METHOD AT e_{1}, e_{2}, $\frac{t}{} e_{3}$. ASSUME EXPONENTIAL SOLUTIONS AND WRITE $i_{1} \frac{1}{4} i_{S}$ IN TERMS OF IMPEOANCES TO OBTAINS THE FOLLOWING:

$$
\left[\begin{array}{ccc}
C_{1} 5+G_{2} & -G_{2} & 0 \\
-G_{2} & G_{2}+G_{3}+G_{41} & -G_{4} \\
0 & -G_{4} & G_{4}+\frac{1}{L_{5}}
\end{array}\right]\left[\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=0
$$

Plug in component values.

$$
\left[\begin{array}{ccc}
\frac{1}{4} s+\frac{1}{4} & \frac{-1}{4} & 0 \\
-\frac{1}{4} & \frac{3}{2} & -1 \\
0 & -1 & \frac{1}{s}+1
\end{array}\right]=0
$$

SOLVE FOR CHARACTERISTIC VALUES USING $\operatorname{det}(M(S))=0$

$$
\begin{gathered}
\left(\frac{1}{4} s+\frac{1}{4}\right)\left[\frac{3}{2}\left(\frac{1}{5}+1\right)-1\right]+\frac{1}{4}\left[\frac{-1}{4}\left(\frac{1}{s}+1\right)\right]=0 \\
2 s^{2}+7 s+5=0 \\
\therefore s=-1 \text { and }-2.5
\end{gathered}
$$

Find characteristic vector e for each characteristic value That satisfies m(s)E $=0$
$S_{1}=-1 \quad M(-1)=\left[\begin{array}{ccc}0 & \frac{-1}{4} & 0 \\ \frac{-1}{4} & \frac{3}{2} & -1 \\ 0 & -1 & 0\end{array}\right] \quad \therefore \quad E_{1}=\left[\begin{array}{c}1 \\ 0 \\ \frac{-1}{4}\end{array}\right]$

$$
S_{2}=-2.5 \quad M(-2.5)=\left[\begin{array}{ccc}
-\frac{3}{8} & \frac{-1}{4} & 0 \\
-\frac{1}{4} & \frac{3}{2} & -1 \\
0 & -1 & \frac{3}{5}
\end{array}\right] \quad \therefore \quad E_{2}=\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
\frac{-5}{2}
\end{array}\right]
$$

$$
\text { so } e(t)=a\left[\begin{array}{c}
1 \\
0 \\
-1 \\
4
\end{array}\right] e^{-t}+b\left[\begin{array}{c}
1 \\
\frac{-3}{2} \\
\frac{-5}{2}
\end{array}\right] e^{-2.5 t}
$$

LOOKING AT CIRCUIT, $v_{1}(t)=e_{1}(t)-0=e_{1}(t)$

$$
\begin{aligned}
& \text { AND } \quad v_{5}(t)=L_{5} \frac{d i_{5}(t)}{d t} \Rightarrow i_{5}(t)=\frac{1}{L_{5}} \int v_{5}(t) d t=\frac{1}{L_{5}} \int e_{3}(t) d t \\
& \therefore \quad v_{1}(t)=a e^{-t}+b e^{-2.5 t} \\
& i_{5}(t)=\frac{a}{4} e^{-t}+b e^{-2.5 t}
\end{aligned}
$$

USE INITIAL CONDITIONS TO SOLVE FOR $a \neq b$:

$$
\begin{aligned}
v_{1}(0)=2 v & =a+b \quad i_{5}(0)=1 A=\frac{a}{4}+b \\
2 & =a+\left(1-\frac{a}{4}\right) \\
1 & =\frac{3}{4} a \\
a & =\frac{4}{3}
\end{aligned}
$$

Unified Engineering Problem Sir Solutions Fall 2004

STATES CORRESPOND TO ENERGY STORAGE UNITS IN CIRCUIT
So sTATES ARE $x_{1}=v_{1}$

$$
x_{2}=i_{5}
$$

USING CONSTITUTIVE RELATIONS FOR INDUCTOR $\frac{1}{4}$ CAPACITOR,

$$
\begin{aligned}
& \dot{x}_{1}=\frac{d v_{1}}{d t}=\frac{i_{1}}{c_{1}} \Rightarrow f\left(v_{1}, i_{5}\right) \quad \zeta \text { WANT STATE DERIVATIVES IN TERMS } \\
& \dot{x}_{2}=\frac{d i_{5}}{d t}=\frac{v_{5}}{L_{5}} \Rightarrow f\left(v_{1}, i_{5}\right) \quad \text { OF STATE VARIABLES }
\end{aligned}
$$

APPLY NODE METHOD AT e_{1}, e_{2}, e_{3} :

$$
\begin{array}{ll}
e_{1}: \quad i_{1}+G_{2} e_{1}-G_{2} e_{2}=0 \\
e_{2}:-G_{2} e_{1}+\left(G_{2}+G_{3}+G_{4}\right) e_{2}-G_{4} e_{3}=0 \\
e_{3}: \quad i_{5}-G_{4} e_{2}+G_{4} e_{3}=0
\end{array}
$$

PLUG IN VALUES AND LET $e_{1}=v_{1}$ \& $e_{3}=v_{5}$

$$
\left.\begin{array}{l}
i_{1}+\frac{1}{4} v_{1}-\frac{1}{4} e_{2}=0 \\
-\frac{1}{4} v_{1}+\frac{3}{2} e_{2}-v_{5}=0 \\
i_{5}-e_{2}+v_{5}=0
\end{array}\right\} \begin{aligned}
& \text { TREAT STATES } v_{1} \frac{1}{4} i_{5} \text { AS CONSTANT } \\
& 3 \text { EQUATIONS, } 3 \text { UNKNOWNS }\left(e_{2}, i_{1}, v_{5}\right)
\end{aligned}
$$

SOLVING FOR i, $\frac{1}{q} v_{5}$ IN ORDER TO FIND $\dot{\dot{x}}$ FROM ABOVE:

$$
\begin{aligned}
& i_{1}=\frac{-1}{8} v_{1}-\frac{1}{2} i_{5} \\
& v_{5}=\frac{1}{2} v_{1}-3 i_{5}
\end{aligned}
$$

SINCE

$$
\dot{x}_{1}=\frac{i_{1}}{c_{1}} \quad \frac{1}{4} \quad \dot{x}_{2}=\frac{v_{5}}{L_{5}}
$$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -2 \\
\frac{1}{2} & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{5}
\end{array}\right]
$$

$$
\dot{x} \quad A \quad \underline{x}
$$

FIND $\operatorname{det}(s I-A)$ to solve for eigenvalues of matrix a

$$
\begin{aligned}
& {[S I-A]=\left[\begin{array}{cc}
S+\frac{1}{2} & 2 \\
-\frac{1}{2} & S+3
\end{array}\right]} \\
& \operatorname{clet}[S I-A]=\left(S+\frac{1}{2}\right)(S+3)+1=0 \\
& \\
& \qquad \left.S^{2}+\frac{7}{2} S+\frac{5}{2}=0 \quad \therefore \right\rvert\, S=-1 \text { AND - } 2.5 \rightarrow \text { EIGENVALUES }
\end{aligned}
$$

SO NONTRIVIAL SOLUTION \underline{V} TO THE EQUATION

$$
[S I-A] \underline{v}=0
$$

is THE EIGEN VEGTUR

$$
\begin{aligned}
& \underline{S_{1}=-1}\left[\begin{array}{cc}
S I-A] \underline{v}=0 \\
{\left[\frac{-1}{2}\right.} & 2
\end{array}\right] \underline{v}=0 \quad \underline{v}_{1}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
& \underline{s_{2}=-2,5}\left[\begin{array}{cc}
-2 & 2 \\
\frac{-1}{2} & \frac{-1}{2}
\end{array}\right] \underline{v}=0 \Rightarrow v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \therefore \underline{x}=a\left[\begin{array}{l}
4 \\
1
\end{array}\right] e^{-t}+b\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-2,5 t}
\end{aligned}
$$

USE INITIAL CONDITIONS TO SOLVE FOR $a \not \& b$

$$
\begin{aligned}
& v_{1}(0)=x_{1}(0)=2 v=4 a+b \\
& 2\left.=4 a+(1-a) \quad i_{5}(0)=x_{2} / 0\right)=1 A=a+b \\
& 1=3 a \\
& a=\frac{1}{3} \rightarrow b=1-a \\
& b\left[\begin{array}{l}
v_{1}(t) \\
\left.i_{5}(t)\right]=\underline{x}=\frac{1}{3}\left[\begin{array}{l}
4 \\
1
\end{array}\right] e^{-t}+\frac{2}{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-2.5 t}
\end{array}\right) \quad b=\frac{2}{3}
\end{aligned}
$$

