Unified Quiz 6F

December 15, 2003

- Put your name on each page of the exam.
- Read all questions carefully.
- Do all work for each problem on the two pages provided.
- Show intermediate results.
- Explain your work --- don't just write equations.
- Partial credit will be given, but only when the intermediate results and explanations are clear.
- Please be neat. It will be easier to identify correct or partially correct responses when the response is neat.
- Show appropriate units with your final answers.
- Calculators and a 2-sided sheet of paper are allowed
- Box your final answers.

Exam Scoring

\#1 (30%)	
\#2 (20%)	
\#3 (50%)	
Total	

1. (30%)

A circular cylinder of radius R has an irrotational incompressible circular-streamline flow about it. The fluid's tangential velocity on the surface $V_{\theta}(R)$ is known.
a) In terms of vorticity and conservation of mass, explain why this flow can be represented by a single vortex of strength Γ at the center of the cylinder. Determine the strength Γ required to correctly represent this flow.
b) An alternative representation is sought using a vortex sheet placed on the cylinder surface as shown. Determine the sheet strength γ required to correctly represent the flow.
c) Using the tangential-velocity jump relation for a vortex sheet

$$
\Delta V_{s}=\gamma
$$

and circulation arguments, determine the (fictitious) flow inside the cylinder for the surfacesheet model. Be sure to show your reasoning.

vortex-sheet
model

Unified Q6F Problem 1 solution Fall '03
a) An incompressible flow has $\nabla \cdot \vec{V}=0$ or $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ in $2 D$

An irrotational flow has $\nabla \times \vec{V}=0$ or $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$ in $2 D$
The single point vortex has velocities... $u=\frac{\Gamma}{2 \pi} \frac{y}{x^{2}+y^{2}}, v=\frac{\Gamma}{2 \pi} \frac{-x}{x^{2}+y^{2}}$
This satisfies both $\nabla \cdot \vec{v}=0$ and $\nabla+\vec{v}=0$

$$
\begin{aligned}
& \Rightarrow \frac{\partial u}{\partial x}+\frac{\partial r}{\partial y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x y}{\left(x^{2} y^{2}\right)}=0 \quad \text { (factor of } \frac{\Gamma}{2 \pi} \text { is irrelevant) } \\
& \Rightarrow \frac{\sqrt{2 v}}{\frac{\partial x}{\partial x}-\frac{\partial y}{\partial y}=\frac{-1}{x^{2}+y^{2}}+\frac{2 x^{2}}{\left(x^{2} y^{2}\right)^{2}}-\frac{1}{\left(x^{2}+y^{2}\right.}+\frac{2 y^{2}}{\left(x^{2} y^{2}\right)^{2}}=\frac{-2}{x^{2}+y^{2}}+\frac{2}{x^{2}+y^{2}}=0}
\end{aligned}
$$

Alterative: If using $\phi(x, y)=\frac{-\Gamma}{2 \pi} \operatorname{artan}\left(\frac{y}{x}\right)$ oo $\psi(x, y)=\frac{\Gamma}{2 \pi} \ln \sqrt{x^{2}+y^{2}}$ to define the flow, then the incompressibily + inrotationality conditions become $\nabla^{2} \phi \equiv \frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y^{2} y}{\partial y^{2}}=0$, or $\nabla^{2} \psi \equiv \frac{\partial^{2} y}{\partial x^{2}}+\frac{x^{2} y}{\partial y^{2}}=0$
Both $\nabla^{2} \phi=0$ or $\nabla^{2} y=0$ can be confirmed for this case,
Set Γ to match known $V_{\theta}(R)$. At $(x, y)=(0, R)$...

$$
U(0, R)=\frac{\Gamma}{2 \pi} \frac{R}{0+R^{2}}=V_{\theta}(R) \Rightarrow \Gamma=2 \pi R V_{\theta}(R)
$$

b) Must have the same total circulation:

$$
\gamma=V_{\theta}(R)
$$

$$
\underbrace{2 \pi R}_{\text {sheet leges }} \gamma=\Gamma=2 \pi R V_{\theta}(R)
$$

c) Flow velocity just inside surface must be zero, since $\Delta V_{S}=V_{\theta}(R)-V_{\theta \text { inside }}=\gamma=V_{\theta}(R) \Rightarrow V_{\theta \text { inside }}=0$
Cannot have any velocity angushere inside, since this would imply a nonzero circulation at that radius.
This is not possible since there is no vortex inside.

$$
\rightarrow \vec{V}=0 \text { inside }
$$

2. (20%)

A lifting airfoil is positioned over an infinite flat ground plane. The air velocity far away is V_{∞}. The flowfield is described by a stream function $\psi(x, y)$.
a) How does the stream function vary along the ground plane (i.e. what does $\psi(x, 0)$ look like)?

The stream function $\psi(x, y)$ is to be represented by placing on the airfoil surface a vortex sheet of strength $\gamma_{1}(s)$. At the same time, a sheet of strength $\gamma_{2}(s)$ is placed on the fictitious mirror image airfoil of the same shape, as shown.
b) How must $\gamma_{2}(s)$ be related to $\gamma_{1}(s)$ so that the flow is correctly represented? Explain.

Unified Q6F Problem 2 Solution al Fall '03
a) Ground plane is a streamline.

$$
\rightarrow \psi(x, 0)=\text { constant }
$$

This also implies $V(x, 0)=-\left.\frac{\partial \psi}{\partial x}\right|_{x, 0}=0$
Flow is tangent to wall.
b) Must have $v(x, 0)=0$. This is only possible if $\gamma_{2}=-\gamma_{1}$ so that contributions at the wall from matching points cancel in y direction.

3. (50%)

The symmetrical NACA 0015 airfoil has a lift coefficient function approximated by

$$
c_{\ell}(\alpha)=\left\{\begin{array}{llll}
1.2 & , & \alpha>0.2 & \text { (positive stall) } \\
6.0 \alpha & , 0.2>\alpha>-0.2 & \text { (unstalled) } \\
-1.2 & , & -0.2>\alpha & \text { (negative stall) }
\end{array}\right.
$$

where α is in radians.

A NACA 0015 airfoil of chord c is held parallel to the x-axis, in a flow with freestream velocity V_{∞} along the x-axis. The air density ρ is effectively constant. A large circular cylinder of radius $R=5 c$ is now stuck in the flow, such that the airfoil is at $x, y=(-5 c, 10 c)$ relative to the cylinder center, as shown.
a) Construct a velocity field $u(x, y)$ and $v(x, y)$ for this configuration, for the purpose of estimating the apparent velocity seen by the little airfoil. Assume the cylinder has inviscid flow about it, and that the airfoil itself has a negligible effect on the overall flow.
b) Evaluate the velocity components u and v at the airfoil location. Is the airfoil stalled?
c) Determine the lift L^{\prime} on the airfoil.

Unified Q6F Problem 3 Solution Fall os
a) Freestrean + Doublet;

$$
\begin{aligned}
& \phi(x, y)=V_{\infty} x+\frac{k}{2 \pi} \frac{x}{x^{2}+y^{2}} \\
& \ddot{u}(x, y)=\frac{\partial}{\partial x}=V_{\infty}+\frac{k}{2 \pi} \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& v(x, y)=\frac{\partial \phi}{\partial y}=\quad \frac{k}{2 \pi} \frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Set doublet strength k so point $(-5 c, 0)$ is a stagnation point.

$$
\begin{gathered}
U(-5 c, 0)=V_{\infty}-\frac{k}{2 \pi} \frac{25 c^{2}}{\left(25_{c}^{2}\right)^{2}}=0 \\
\text { or } \frac{k}{2 \pi}=25 c^{2} V_{\infty} \\
s_{0} \\
u(x, y)=V_{\infty}\left(1+25 c^{2} \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
V(x, y)=V_{\infty}\left(-25 c^{2} \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)
\end{gathered}
$$

b) At $x, y=\left(-5_{c}, 10 c\right) \ldots$

$$
\begin{aligned}
& U\left(-5_{c}, V_{c}\right)=V_{\infty}\left(1+25_{c}^{2} \frac{100-25}{(25+100)^{2} c^{2}}\right)=1.12 V_{\infty} \\
& v\left(-5_{c}, V_{c}\right)=V_{\infty}\left(-25 c^{2} \frac{2 \cdot(-5) .10}{(25+100)^{2} c^{2}} \frac{1}{2}\right)=0.16 V_{\infty}
\end{aligned}
$$

Airfoil sees $\left[\alpha=\arctan \frac{v}{u}=\arctan \left(\frac{0.16}{1.12}\right)=8.13^{\circ}=0.1419\right.$ rod $]<0.2$ not stalled
f) $\cdot C_{l}(x)=6.0 \cdot 0.1419=0.8514$

Dynamic pressure at airfoil:

$$
\begin{aligned}
&\left.\frac{1}{2} \rho V^{2}=\frac{1}{2} \rho\left(x^{2}+v^{2}\right)=\frac{1}{2} \rho V_{\infty}^{2}\left(1.12^{2}+0.16\right)^{2}\right)=\frac{1}{2} \rho V_{\infty}^{2} \cdot 1.28 \\
& {\left[L^{\prime}=\frac{1}{2} \rho V^{2} c C_{l}=\frac{1}{2} \rho V_{\infty}^{2} \cdot 1.28 \cdot c \cdot 0.8514\right.}=\frac{1}{2} \rho V_{\infty}^{2} c \cdot 1.0898 \\
&=0.5449 \rho V_{\infty}^{2} c
\end{aligned}
$$

