\qquad

Unified Quiz 3S

November 5, 2004
Two 81/2" $\times 11 "$ sheets (both sides) of notes allowed.
Calculators are not needed, and may not be used.
No books allowed.

- Put the last 4 digits of your ID on each page of the exam.
- Read all questions carefully.
- Do all work for each problem on the two pages provided.
- Show intermediate results.
- Explain your work --- don't just write equations. Any problem (except multiple choice) without an explanation can receive no better than a "B" grade.
- Partial credit will be given, but only when the intermediate results and explanations are clear.
- Please be neat. It will be easier to identify correct or partially correct responses when the response is neat.
- Show appropriate units with your final answers.
- Box your final answers.

Exam Scoring

\#1 (12.5\%)	
\#2 (12.5\%)	
\#3 (25\%)	
\#4 (25\%)	
\#5 (25\%)	
Total	

\qquad

PROBLEM \#1 (12.5\%)

Consider the circuit above with three identical light bulbs, an inductor, and a switch. Initially, the switch is open, and has been open for a long time. When the switch is closed, what happens to the intensity of each bulb?

1. Immediately after the switch is closed, the intensity of bulb A
increases decreases stays the same
2. Immediately after the switch is closed, the intensity of bulb B
increases decreases stays the same
3. After the switch has been closed for a long time, the intensity of bulb A is
greater than less than the same as
the intensity of bulb A before the switch is closed.
4. After the switch has been closed for a long time, the intensity of bulb B is greater than less than the same as the intensity of bulb B before the switch is closed.

Unified Quiz 3S

November 5, 2004

ID number

PROBLEM \#2 (12.5\%)

Find the Thevinin equivalent for the circuit below:

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#2 (continued)

Unified Quiz 3S

November 5, 2004
ID number

PROBLEM \#3 (25\%)

For the circuit above, calculate:
(a) The node potentials e_{1} and e_{2}.
(b) The current in the 3Ω resistor. Make sure that you specify the direction of the current.

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#3 (continued)

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#4 (continued)

Unified Quiz 3S

November 5, 2004

ID number

PROBLEM \#4 (25\%)

A circuit has dynamics described by the state-space equation

$$
\frac{d}{d t}\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]
$$

Find $v_{1}(t)$ and $i_{2}(t)$ for the initial conditions

$$
\begin{aligned}
& v_{1}(0)=1 \mathrm{~V} \\
& i_{2}(0)=4 \mathrm{~A}
\end{aligned}
$$

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#4 (continued)

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#4 (continued)

Unified Quiz 3S

November 5, 2004
ID number

PROBLEM \#5 (25\%)

Find the differential equations that describe the input-output behavior of the circuit above, in state-space form,

$$
\begin{aligned}
& \underline{\dot{x}}(t)=A \underline{x}(t)+B u(t) \\
& y(t)=C \underline{x}(t)+D u(t)
\end{aligned}
$$

That is, you must define the state vector \underline{x}, and then derive the matrices A, B, C, and D. The component values are not given, so your answer should be in symbolic form.

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#5 (continued)

Unified Quiz 3S
November 5, 2004
ID number

PROBLEM \#5 (continued)

