

Page 1 of 11 Name________________________________

16.unified
Introduction to Computer Programming

Examination

11/18/05

Professor I. Kristina Lundqvist,
Lecturers Heidi Perry and Gustaf Naeser

Fall 2005

You have 55 minutes to take this examination. Do not begin until you are instructed to do
so. This is a closed book examination. No external materials are permitted, including
calculators or other electronic devices. All answers must be written in the examination
paper. This examination should consist of 11 pages (including this cover sheet). Count
the number of pages and immediately report any discrepancy. Should you need to do so,
you may continue your answer on the back pages. Put your name at the bottom of each
page of this exam.

Question 1 True/False (10)
Question 2 Read Ada Code (20)
Question 3: Recursion (10)
Question 4: Arrays (15)
Question 5: Number Conversions (15)
Question 6: Computer Architecture (10)
Question 7: Rover (20)

Page 2 of 11 Name________________________________

Problem 1

True or False (10p)
(1p each)

For each statement, indicate if it is true (T) or false (F).

The strong typing of Ada95 prevents users from confusing variables of different
types.

Iteration and recursion solves the same kind of problem: repeated execution of
statements.

A string in Ada95 can be treated as records of characters.

Variable declarations implicitly set default values of the declared variable.

Variables used as actual parameters must have the same name as the name of the
subprogram’s formal parameters.

All kinds of loops can be described using for loops.

A function that returns two values must be implemented as a procedure.

Distinct datatypes, e.g. type My_Type is new Integer, are for creating types that
should not be confused with other types using the same symbols (possible values).

Subtypes are assignment compatible with the base type.

You can store both positive and negative numbers using 2-complement

Page 3 of 11 Name________________________________

Problem 2 Reading Ada Code (20p)

Our programmer friend Joe D has written the program main.adb. Predict what the output
of Joe’s program will be at commented lines A through F.

main.adb
with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;

procedure Main is

 A : Integer := 2;
 B : Integer := 5;
 C : Integer := 4;

 function F1 (X: Integer;Y :Integer) return Integer is
 C : Integer;
 begin
 C := X+Y;
 return C;
 end;

 procedure F2 (X: in out Integer; Y : in Integer) is
 begin
 A := X;
 X := A*Y;
 end;

begin
 B:=A*B;
 A:=F1(B,C);
 Put(A); -- Part A

 B:=B+C;
 Put(B); -- Part B

 A:=A-C;
 F2(B,C);
 Put(B); -- Part C
 Put(A); -- Part D

 C:=F1(A,B);
 Put(C); -- Part E

 for C in 1..A loop
 B:=B+1;
 end loop;
 Put(B); -- Part F
 Put(C); -- Part G

end Main;

Part A = Part D = Part G =

Part B = Part E =

Part C = Part F =

Page 4 of 11 Name________________________________

Problem 3 Recursion (10p)

What is wrong with the following recursive function and how should it be corrected?
(Hint, look at the results from the two calls to it.)

Indicate the change that should be done and give a short motivation/explanation of no
more than two lines.

recursiveaddition.adb
with Ada.Integer_Text_IO;
use Ada.Integer_Text_IO;

procedure RecursiveAddition is

 function Add_Every_Other_From_Zero(N : Integer) return Integer is
 begin
 if (N = 0) then
 return 0;
 else
 return N + Add_Every_Other_From_Zero(N-2);
 end if;
 end Add_Every_Other_From_Zero;

begin
 Put(Add_Every_Other_From_Zero(8));
 Put(Add_Every_Other_From_Zero(7));
end RecursiveAddition;

Page 5 of 11 Name________________________________

Problem 4 Arrays and Records (15p)

a. Consider the program arrayinit.adb .

arrayinit.adb
with Ada.Integer_Text_IO;
use Ada.Integer_Text_IO;

procedure ArrayInit is
 type TenArray is array (1..10) of Integer;
 Chunk : TenArray;
begin
 for I in TenArray'Range loop
 Put(Chunk(I));
 end loop;
end ArrayInit;

What warnings or errors can be expected during compilation of the program? (3p)

What will the output be when running the program? (2p)

Write code to correct the problem and indicate where the code should go. (5p)

Page 6 of 11 Name________________________________

b. Consider the program in nutsandbolts.adb. (5 p)

nutsandbolts.adb
with Ada.Text_Io, Ada.Integer_Text_Io;
use Ada.Text_Io, Ada.Integer_Text_Io;

procedure NutsAndBolts is

 type Description is
 record
 L : Integer;
 H : Integer;
 W : Integer;
 Cost : Float;
 end record;

 type Sets is array (1..30) of Description;
 type Part is (Bolt, Nut, Cap);
 type Catalog is array (Part'range) of Sets;

 type Warehouse is
 record
 Bolts_R_Us: Catalog;
 Hold_Tighter : Catalog;
 end record;

 Dist_Center : Warehouse;

begin
 -- Set length (L) of the 10th Nut in the Bolts_R_Us Catalog to 10 HERE.

end NutsAndBolts;

How would you go about setting the length (L) of the 10th Nut in the Bolts_R_Us Catalog
to 10? Write the statement for the assignment in the code above. (10p)

Page 7 of 11 Name________________________________

 Problem 5 Number Conversions (15 P)

a. Match the decimal and hexadecimal numeric values on the left to their equivalent
binary numeric values on the right. (12p)

 000000012

 EB16 100010002

 110 111010112

-12010 (2’s complement) 000011012

-11910 (1’s complement) 111100112

 7816 (2’s complement) 100010002

24310 100011002

 3F16 111011012

011110002

001111112

b. Convert the following floating point number to decimal notation. Note: The number
has been stored using scientific notation, i.e., the leftmost 1 has been removed. (3p)

111011001100 with 1 signbit, 4 bits exponent (excess4) and 7 bits mantissa =

Page 8 of 11 Name________________________________

Problem 6 Computer Architecture (10 P)

Assume you have an 8-bit computer that contains two registers (R1 and R2) to contain
data the CPU will use for arithmetic operations. This computer is designed to process the
following legal Opcodes:

000 = stop
001 = load data stored at indicated address into R1
010 = load data stored at indicated address into R2
011 = store R1 into address location given
100 = store R2 into address location given
101 = add R1 to R2 (results stored in R2)

The three most significant bits contain the op-code. The remaining 5 bits contain the
address of any data that is required by the operation.

a. The machine level program that is written below is equivalent to the Ada
statement of Y:=X + Y + Z; where X, Y, and Z are stored in addresses 1010, 1110
and 1210 respectively. Fill in the meaning of each of the statements. The first one
has already been done for you.

OpCode Address Meaning
010 01011 (1110) Load data stored at address 1110 (the # Y) into R2
001 01010 (1010)
101 00000
001 01100 (1210)
101 00000
100 01011
000 00000

b. Given the contents of memory BEFORE the execution of the program, fill in the
contents of memory AFTER the above machine instruction program has executed:

Address Data (memory contents)
00001010 (1010) 00000011
00001011 (1110) 00001001
00001100 (1210) 00010000
BEFORE

Address Data (memory contents)
00001010 (1010)
00001011 (1110)
00001100 (1210)
AFTER

Page 9 of 11 Name________________________________

Problem 7 The Rover (20 P)

Student Ida Know has written the following lego program for the Mars Rover you built
for this class. She did not comment it well at all. And some of the procedure names are
boring and do not reflect the actual purpose of the code.

a. Comment her code in the areas that are outlined. Describe why a particular
section of code exists rather than just describing what it does. (6p)

with Lego;
use Lego;

procedure Q4 is

 Left_Wheel : constant Output_Port := Output_A;
 Right_Wheel : constant Output_Port := Output_C;
 Left_Rot : constant Sensor_Port := Sensor_1;
 Right_Rot : constant Sensor_Port := Sensor_3;
 Light : constant Sensor_Port := Sensor_2;

 procedure P1 is
 begin
 --
 Output_Power(
 Output => Left_Wheel,
 Power => Power_High);
 Output_Power(
 Output => Right_Wheel,
 Power => Power_High);
 --
 Config_Sensor(
 Sensor => Left_Rot,
 Config => Config_Rotation);
 Config_Sensor(
 Sensor => Right_Rot,
 Config => Config_Rotation);
 --
 Config_Sensor(
 Sensor => Light,
 Config => Config_Light);

 Output_Power(Left_Wheel,7);
 Output_Power(Right_Wheel,7);
 Clear_Sensor(Left_Rot);
 Clear_Sensor(Right_Rot);

 end P1;

 procedure Drive_Forward(Clicks:Integer) is
 begin

 -- Clear sensors and apply power to rover wheels
 Clear_Sensor(Left_Rot);
 Clear_Sensor(Right_Rot);

Output_On_Reverse(Left_Wheel);

Page 10 of 11 Name________________________________

 Output_On_Reverse(Right_Wheel);

 while (abs(Get_Sensor_Value(Left_Rot))<Clicks) loop
 Wait(10);
 end loop;

 Output_Off(Left_Wheel);
 Output_Off(Right_Wheel);

 end Drive_Forward;

 procedure P2 is
 begin
 --
 Output_On_Forward(Left_Wheel);
 Output_On_Reverse(Right_Wheel);

 Wait(1000);
 --
 Output_Off(Left_Wheel);

Output_Off(Right_Wheel);

 end P2;

 Value : Integer;

begin
 --
 P1;
 Select_Display(Display_Sensor_2);
 loop
 Drive_Forward(1000);

 Wait(100);
 Value := Get_Sensor_Value(Light);

 P2;

 Wait(100);
 Value := Get_Sensor_Value(Light);
 end loop;
end;

b. Rename the procedures (P1, P2) so they have more appropriate names that reflect
what the procedure does for the lego rover (4 p)

P1_________________________________

P2_________________________________

In this comment, identify what
the rover will do when this
program executes

Page 11 of 11 Name________________________________

c. I enjoyed the Lego portion of Unified C&P (please answer honestly). (2p)

A. I agree
B. I disagree
C. Choose me and you get a zero
D. I don’t know/I don’t understand.

d. Short answer: Why should you call the lego procedure Clear_Sensor for the

rotation sensor before doing a new rover maneuver? (2p)

e. The Lego Rover ….(circle all that apply) (3p)

1) runs Mission Critical Software.
2) software is real time.
3) is an embedded system.
4) is an example of a Von Neuman Architecture.
5) is used on the Pathfinder mission.
6) is certified by NASA.
7) has a separate floating point processor.

f. List 3 features of the standard Ada95 language that you cannot use with Ada
Mindstorms and the Lego Rover (3p)

1.__

2.__

3.__

