UE Problem E4-5

a)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>(\text{kg/m} \cdot \text{s}^2)</td>
</tr>
<tr>
<td>(V)</td>
<td>(\text{m/s})</td>
</tr>
<tr>
<td>(\rho)</td>
<td>(\text{kg/m}^3)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>(\text{kg/m} \cdot \text{s})</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\text{m})</td>
</tr>
</tbody>
</table>

\[
\Pi_1 = \frac{\sigma}{\rho \ell V^2}
\]

\[
\Pi_2 = \frac{\rho V^2}{\mu} = \text{Re}
\]

Other sets are possible, as always.

b)

Must have \(\Pi \)'s match:

\[
\frac{\sigma_1}{\rho_1 \ell_1 V_1^2} = \frac{\sigma_2}{\rho_2 \ell_2 V_2^2} = \frac{\rho V_1 \ell_1}{\mu} = \frac{\rho V_2 \ell_2}{\mu}
\]

From \(\text{Re} \) match \(V_1 \ell_1 = V_2 \ell_2 \),

\[
[\text{Re}] \quad \frac{V_2}{V_1} \ell_1 = 30 \text{m/s}, \quad \frac{V_2}{V_1} \ell_1 = 150 \text{m/s}
\]

Then we will have \(\sigma_2 = 25 \sigma_1 \).

c)

Assume \(\mu \) has negligible effect.

Parameter

\(\sigma \)

\(\rho \), \(V \)

These will now always appear together as \(\rho V^2 \) or \(\ell \rho V^2 \), so they are really just one significant parameter, say \(g = \ell \rho V^2 \)

So revised parameter list is

\[
\begin{align*}
\sigma & \quad [\text{Pa}] \\
\rho & \quad [\text{kg/m}^3] \\
V & \quad [\text{m/s}] \\
\ell & \quad [\text{m}] \\
\end{align*}
\]

Note: Part c) is a freebie, since this wasn't covered. No points lost.