Problem S6.1: Look-back to Lectures 9 and 10 (10 points)

Consider the following spring-mass-damper system:

where \(d_1 \) is the displacement of mass \(m_1 \) and \(d_2 \) is the displacement of mass \(m_2 \), both measured relative to the mass rest positions. \(k \) is the spring constant, \(c \) is the damping coefficient, and \(f \) is the force applied to \(m_2 \) as shown in the diagram.

(a) Derive the differential equations governing this system.

(b) If the input is the applied force \(f \) and the output of interest is \(d_2 \), what are the state-space matrices \(A, B, C, \) and \(D \)?

(c) Sketch a block diagram of your state-space system in part (b).

(d) If the input is the applied force \(f \), and the outputs of interest are \(d_1 \) and \(d_2 \), what are the state-space matrices \(A, B, C, \) and \(D \)?

(e) For the following parameter values: \(m_1 = 1, m_2 = 0.1, k = 0.1, c = 2 \), compute the eigenvalues and eigenvectors of your matrix \(A \) from part (b). You can do this computationally using Matlab as follows. First, define the matrix \(A \) in Matlab. Then the command \([V,D] = \text{eig}(A);\) returns the eigenvectors of \(A \) as columns of the matrix \(V \) and the corresponding eigenvalues of \(A \) on the diagonal entries of the matrix \(D \). Type \texttt{help eig} for more help on how to use this function.