Signals and Systems
Lecture (S1)

Response of LTI
Systems to Complex
Exponentials

March 13, 2008

Today’s Topics
1. Response of LTI systems to complex exponentials
2. Representing sinusoids as complex exponentials
3. Examples

Take Away
A sinusoidal input to a stable LTI system produces a
sinusoid response at the input frequency. Both the
amplitude and phase of the input sinusoid are modified
by the LTI system to produce the output. The mnput
frequency completely determines how the amplitude
and phase are modified.

Required Reading

O&W-3.0,3.1,3.2



LTI System Responses

Complex exponentials are an extremely useful class of
functions for representing signals in LTI systems. This
utility stems, in part, from-

1. a very wide class of real world signals can be
represented, to virtually any desired level of
accuracy, by complex exponentials.

2. the responses of LTI systems to this broad class of
signals can be represented and analyzed quite
effectively using complex exponentials.

Of particular significance is the fact that the response of an
LTI system, to a complex exponential, is that same
complex exponential multiplied by another complex
exponential.
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where the output is obtained by the convolution integral
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Now, the exponential of the difference can be written as a
product, so
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and we deﬁne'
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This integral is the transfer function of the LTI system and
it will play a very important role in what we will be doing
in future lectures. Note, in particular, that the transfer
function is a function of the complex variable s and is not a
function of time. Also, for the time being, we tacitly
assume that the infinite integral converges. This question
will be important later in our work.




Substituting back into the equation for the output we obtain
a simple expression for the output in terms of the input
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Such signals, for which the system output is simply a
multiplication of the input by another complex variable, are
called eigenfunctions and the multiplicative factor is the
called the eigenvalue. Thus complex exponentials are
eigenfunctions of LTI systems.

We will also draw on your LTI systems work last term
using the principle of superposition. Recall that if the input
to a system is made up of the sum of two signals, then the
total output is the sum of the outputs that result from the
system operating on each of the two inputs separately.

In particular, the system
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is equivalent to the system
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Hence if the input signals are complex exponentials, so
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We now have enough tools to do an aerospace problem.

Example 1

We wish to send a signal from our Earth based
communications facility to a lunar lander on the surface of
the Moon.

The transmitted signal is a tone (sinusoid) that we designate
as u(t), so
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The signal u(?) is transmitted from Earth and a signal y(z) is
received at the Moon.



In order to analyze the effects of transmission we will use a
complex exponential representation of u(z). We can write
Euler’s Equation as
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then u(?) can be written as the difference of two complex
exponentials
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Also, the transmission phenomena can be modeled as a LTI
system

y ()

WY o
SPQ{€ Yvaw!»«-‘;f(iav\ V’]_._....._.}

Pkewmﬂwm

(4

The transmission of the signal through space, from Earth to
Moon, has two effects. The signal is attenuated to a very
significant amount and it is also delayed in time. Hence the
impulse response of the transmission is

= ks(z-T)

where k is an attenuation factor that models the loss of
signal strength and 7' is the time delay incurred, as the
signal travels at the speed of light from Earth to Moon

T>0 o<k «<l



To determine the output y(z) we need the system transfer
function. From above the system transfer function is
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Also, we know that the sinusoidal input 1s the difference of
two complex exponentials. From above
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and using superposition once again we can draw the
following block diagram
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Each of the two input branches 1s a complex exponential
input to the system transfer function so
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Thus our complex exponential analysis of this simple
problem yields he correct result, namely that the
transmitted signal is attenuated by the factor £ and delayed
by the time T.

This example was kind of a long process to realize an
answer that was rather obvious from the beginning. Now
let’s do a problem for which the complex analysis is more
useful.



Example 2

The transmission system for our previous problem was
assumed to transmit the desired sinusoidal signal precisely.
However, typically there are significant dynamic effects in
the electronics of such a transmitter. Thus, we are
interested in what happens if we transmit signals of various
frequencies. The transmitter is modeled as a LTI system
with input u(?) and output y(?). Of course the transmitter
output 1s the input to our previous LTI system. Hence we
now have the following block diagram-

S e

: (ﬂ. T “ﬂSM';“tfﬁ\ 4 L)
. “ .
Tusud s Pgramics
{3»..3# Scan( : h('ﬁ; _ RC'&M“.[ SI{V\‘_{
Te TVQAS’"{“QV' | Tran g tred

where now the LTI transmitter system is a first order causal
system

—at
Wi = ae 2vo aS> a
- O A <o

and the coefficient a is the inverse time constant of the
transmitter. We can find the system transfer function as
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Now recall that the desired signal that we wish to transmit
is the sinusoid
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which has the complex eprnential representation
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Also, 1f we apply superposition, once again the transmitted
signal is-
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Hence the transmitter still transmits a sine function at the
desired frequency o, but its amplitude is reduced by an
input/output amplitude ratio factor (M) and the phase of
the signal lags by the phase angle ().
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Note in particular that both M and ¢ are functions of the
input frequency w,. These functions are plotted as Fig. 6.20
on page 499 in the text, as follows
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where 7 =1/a is the system time constant.

As can be seen in the diagram, for frequencies well below

a =1/t the transmitter passes the signal virtually unchanged
but for frequencies much higher than a the signal is
attenuated and there is also a phase lag. The amplitude
reduction goes inversely with frequency while the phase lag
approaches -»/2 asymptotically.

13



It 1s important to point out that we have tacitly made an
important assumption in this development. In fact we have
only obtained the steady state solution to our problem. By
setting s==jw, in the transfer function we have ignored the
real part of the complex variable s. In doing so we have
eliminated the transient (homogeneous) part of the solution.
When we do this we are ignoring any startup process.
Physically this means that the stable system has been
operating long enough with the sinusoidal input so that all
effects of the startup process have disappeared.

In general, when we do this substitution into the system
transfer function, we obtain the system frequency response.
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