1. (50 %) Air flows into a constricting channel which has an electrical resistive heater in it. There is low speed flow throughout, which in this case means $V^2 \ll h$. All the quantities shown in the figure are known. The objective is to determine the remaining flow quantities at the exit location 2.

a) Draw a suitable control volume, and apply the integral mass and integral enthalpy equations to relate stations 1 and 2.

b) Determine the exit enthalpy h_2.

c) Determine the exit density ρ_2.

d) Determine the exit velocity V_2
2. (50 %) A mosquito is hovering in still air having the initial conditions

\[a_i = 350 \text{ m/s} \quad p_i = 100000 \text{ Pa} \]

A shock wave traveling at \(V_s = 420 \text{ m/s} \) then passes the mosquito.

\[V_s \quad V_s \]
\[\begin{array}{c|c}
 a_i & a_f \\
 p_i & p_f \\
 \text{before} & \text{after}
\end{array} \]

a) Sketch the air velocity distribution \(V(x) \) in the mosquito’s frame.

b) Sketch the air velocity distribution \(V(x) \) in the steady shock frame.

c) Determine the final pressure \(p_f \) and speed of sound \(a_f \) the mosquito feels after it goes through the shock.