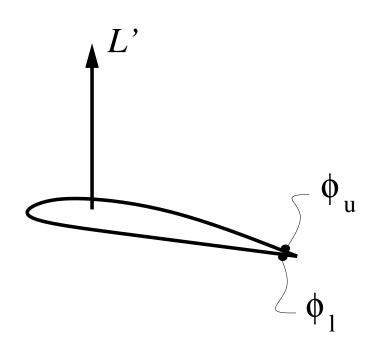

What must be true about the difference $\psi_{\mathbf{u}} - \psi_{\mathbf{l}}$ at the two surface points at the trailing edge of a lifting airfoil?

1.
$$\psi_{\mathbf{u}} - \psi_{\mathbf{l}} < \mathbf{0}$$

$$2. \quad \psi_{\mathbf{u}} - \psi_{\mathbf{l}} = \mathbf{0}$$

3.
$$\psi_{\mathbf{u}} - \psi_{\mathbf{l}} > \mathbf{0}$$

4. No way to know for sure from given information

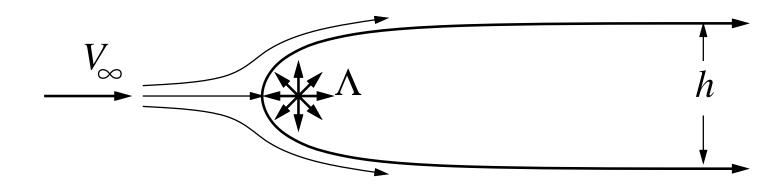

What must be true about the difference $\phi_{\mathbf{u}} - \phi_{\mathbf{l}}$ at the two surface points at the trailing edge of a lifting airfoil?

1.
$$\phi_{\mathbf{u}} - \phi_{\mathbf{l}} < \mathbf{0}$$

$$2. \quad \phi_{\mathbf{u}} - \phi_{\mathbf{l}} = \mathbf{0}$$

3.
$$\phi_{\mathbf{u}} - \phi_{\mathbf{l}} > \mathbf{0}$$

4. No way to know for sure from given information



If $D\xi/Dt = 0$ in a steady inviscid flow, what must be strictly true about the $\xi(\mathbf{x}, \mathbf{y})$ field?

- 1. $\xi = 0$ everywhere
- 2. $\xi = 0$ along any streamline
- 3. $\xi = \text{const.}$ everywhere
- 4. $\xi = \text{const.}$ along any streamline

A source of strength Λ is in a uniform flow V_{∞} . What is the spacing height h of the dividing streamlines infinitely far downstream?

- 1. h = 0
- 2. $\mathbf{h} = \mathbf{\Lambda}/\mathbf{V}_{\!\!\infty}$
- 3. $\mathbf{h} = 2\Lambda/\mathbf{V}_{\!\!\infty}$
- 4. $h=\infty$
- 5. Cannot be determined from given information

