
Fluids – Lecture 4 Notes

1. Dimensional Analysis – Buckingham Pi Theorem

2. Dynamic Similarity – Mach and Reynolds Numbers

Reading: Anderson 1.7

Dimensional Analysis

Physical parameters

A large number of physical parameters determine aerodynamic forces and moments. Specif-
ically, the following parameters are involved in the production of lift.

Parameter Symbol Units
Lift per span L′ mt−2

Angle of attack α —
Freestream velocity V

∞
lt−1

Freestream density ρ
∞

ml−3

Freestream viscosity µ
∞

ml−1t−1

Freestream speed of sound a
∞

lt−1

Size of body (e.g. chord) c l

For an airfoil of a given shape, the lift per span in general will be a function of the remaining
parameters in the above list.

L′ = f(α, ρ
∞
, V

∞
, c, µ

∞
, a

∞
) (1)

In this particular example, the functional statement has N = 7 parameters, expressed in a
total of K = 3 units (mass m, length l, and time t).

Dimensionless Forms

The Buckingham Pi Theorem states that this functional statement can be rescaled into an
equivalent dimensionless statement

Π1 = f̄( Π2, Π3 . . .ΠN−K)

having only N−K = 4 dimensionless parameters. These are called Pi products, since they
are suitable products of the dimensional parameters. In the particular case of statement (1),
suitable Pi products are:

Π1 =
L′

1

2
ρ

∞
V 2

∞
c

= cℓ lift coefficient

Π2 = α = α angle of attack

Π3 =
ρ

∞
V

∞
c

µ
∞

= Re Reynolds number

Π4 =
V

∞

a
∞

= M
∞

Mach number

The dimensionless form of statement (1) then becomes

cℓ = f̄(α, Re, M
∞

) (2)
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We see that the original 6 dimensional parameters which influence L′ has been reduced to
only 3 dimensionless parameters which influence cℓ.

Benefits of non-dimensionalization

The reduction of parameter count is potentially a huge simplification. Consider an exaustive
lift-measurement experiment where the effect of all parameters is to be determined. Let’s
assume that in this experiment we need to give each parameter 5 distinct values in order
to adequately ascertain its effect on the lift. If we work with the 6 dimensional parameters
in statement (1), then the number of possible parameter combinations and experimental
runs required is 56 = 15625 (!). But if we work with the 3 dimensionless parameters in
statement (2), the number of parameter combinations and experimental runs is only 53 = 125,
which is more than a hundredfold reduction in effort. Nondimensionalization is clearly a
powerful technique for minimizing experimental effort.

The benefits of non-dimensionalization also extend to theoretical work. Deducing a statement
such as (2) at the outset can be useful to guide subsequent detailed analysis. Theoretical
results are also usually more concise and clear when presented in dimensionless form.

Derivation of dimensionless forms

Anderson 1.7 has details on how the Pi product combinations can be derived for any complex
situation using linear algebra. In many cases, however, the products can be obtained by
physical insight, or perhaps by inspection. Several rules can be applied here:

• Any parameter which is already dimensionless, such as α, is automatically one of the
Pi products.

• If two parameters have the same units, such as V
∞

and a
∞

, then their ratio (M
∞

in
this case) will be one of the Pi products.

• A power or simple multiple of a Pi product is an acceptable alternative Pi product. For
example, (V

∞
/a

∞
)2 is an acceptable alternative to V

∞
/a

∞
, and ρ

∞
V 2

∞
is an acceptable

alternative to 1

2
ρ

∞
V 2

∞
. Which particular forms are used is a matter of convention.

• Combinations of Pi products can replace the originals. For example, the 3rd and 4th
products in the example could have been defined as

Π3 =
ρ

∞
a

∞
c

µ
∞

= Re/M
∞

Π4 =
V

∞

a
∞

= M
∞

which is workable alternative, but perhaps less practical, and certainly less traditional.

• If a unit appears in only one parameter, then that parameter cannot appear in any Pi
product. Such a parameter therefore cannot be significant to the problem, and must
be stricken from the list.

Dynamic Similarity

It is quite possible for two differently-sized physical situations, with different dimensional
parameters, to nevertheless reduce to the same dimensionless description. The only require-
ment is that the corresponding Pi products have the same numerical values.
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Airfoil flow example

Consider two airfoils which have the same shape and angle of attack, but have different sizes
and are operating in two different fluids. Let’s omit the ()

∞
subscript for clarity.

Airfoil 1 (sea level) Airfoil 2 (cryogenic tunnel)
α1 = 5◦ α2 = 5◦

V1 = 210 m/s V2 = 140 m/s
ρ1 = 1.2 kg/m3 ρ2 = 3.0 kg/m3

µ1 = 1.8 × 10−5 kg/m-s µ2 = 1.5 × 10−5 kg/m-s
a1 = 300 m/s a2 = 200 m/s
c1 = 1.0 m c2 = 0.5 m

Airfoil 1  −  Sea level air Airfoil 2  −  Cryogenic tunnel

The Pi products evaluate to the following values.

Airfoil 1 Airfoil 2
α1 = 5◦ α2 = 5◦

Re1 = 1.4 × 107 Re2 = 1.4 × 107

M1 = 0.7 M2 = 0.7

Since these are also the arguments to the f̄ function, we conclude that the cℓ values will be
the same as well.

f̄(α1, Re1, M1) = f̄(α2, Re2, M2)

cℓ1
= cℓ2

When the nondimensionalized parameters are equal like this, the two situations are said to
have dynamic similarity . One can then conclude that any other dimensionless quantity must
also match between the two situations. This is the basis of wind tunnel testing, where the
flow about a model object duplicates and can be used to predict the flow about the full-
size object. The prediction is correct only if the model and full-size objects have dynamic
similarity.
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