Fluids - Lecture 13 Notes

1. Bernoulli Equation
2. Uses of Bernoulli Equation

Reading: Anderson 3.2, 3.3

Bernoulli Equation

Derivation - 1-D case

The 1-D momentum equation, which is Newton's Second Law applied to fluid flow, is written as follows.

$$
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}=-\frac{\partial p}{\partial x}+\rho g_{x}+\left(F_{x}\right)_{\text {viscous }}
$$

We now make the following assumptions about the flow.

- Steady flow: $\partial / \partial t=0$
- Negligible gravity: $\rho g_{x} \simeq 0$
- Negligible viscous forces: $\left(F_{x}\right)_{\text {viscous }} \simeq 0$
- Low-speed flow: ρ is constant

These reduce the momentum equation to the following simpler form, which can be immediately integrated.

$$
\begin{aligned}
\rho u \frac{d u}{d x}+\frac{d p}{d x} & =0 \\
\frac{1}{2} \rho \frac{d\left(u^{2}\right)}{d x}+\frac{d p}{d x} & =0 \\
\frac{1}{2} \rho u^{2}+p & =\text { constant } \equiv p_{o}
\end{aligned}
$$

The final result is the one-dimensional Bernoulli Equation, which uniquely relates velocity and pressure if the simplifying assumptions listed above are valid. The constant of integration p_{o} is called the stagnation pressure, or equivalently the total pressure, and is typically set by known upstream conditions.

Derivation - 2-D case

The 2-D momentum equations are

$$
\begin{aligned}
& \rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial y}=-\frac{\partial p}{\partial x}+\rho g_{x}+\left(F_{x}\right)_{\text {viscous }} \\
& \rho \frac{\partial v}{\partial t}+\rho u \frac{\partial v}{\partial x}+\rho v \frac{\partial v}{\partial y}=-\frac{\partial p}{\partial y}+\rho g_{y}+\left(F_{y}\right)_{\text {viscous }}
\end{aligned}
$$

Making the same assumptions as before, these simplify to the following.

$$
\begin{align*}
& \rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial y}+\frac{\partial p}{\partial x}=0 \tag{1}\\
& \rho u \frac{\partial v}{\partial x}+\rho v \frac{\partial v}{\partial y}+\frac{\partial p}{\partial y}=0 \tag{2}
\end{align*}
$$

Before these can be integrated, we must first restrict ourselves only to flowfield variations along a streamline. Consider an incremental distance $d s$ along the streamline, with projections $d x$ and $d y$ in the two axis directions. The speed V likewise has projections u and v.

Along the streamline, we have

$$
\frac{d y}{d x}=\frac{v}{u}
$$

or

$$
\begin{equation*}
u d y=v d x \tag{3}
\end{equation*}
$$

We multiply the x-momentum equation (1) by $d x$, use relation (3) to replace $v d x$ by $u d y$, and combine the u-derivative terms into a $d u$ differential.

$$
\begin{align*}
\rho u \frac{\partial u}{\partial x} d x+\rho v \frac{\partial u}{\partial y} d x+\frac{\partial p}{\partial x} d x & =0 \\
\rho u\left(\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y\right)+\frac{\partial p}{\partial x} d x & =0 \\
\rho u d u+\frac{\partial p}{\partial x} d x & =0 \\
\frac{1}{2} \rho d\left(u^{2}\right)+\frac{\partial p}{\partial x} d x & =0 \tag{4}
\end{align*}
$$

We multiply the y-momentum equation (2) by $d y$, and performing a similar manipulation, we get

$$
\begin{align*}
\rho u \frac{\partial v}{\partial x} d y+\rho v \frac{\partial v}{\partial y} d y+\frac{\partial p}{\partial y} d y & =0 \\
\rho v\left(\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y\right)+\frac{\partial p}{\partial y} d y & =0 \\
\rho v d v+\frac{\partial p}{\partial y} d y & =0 \\
\frac{1}{2} \rho d\left(v^{2}\right)+\frac{\partial p}{\partial y} d y & =0 \tag{5}
\end{align*}
$$

Finally, we add equations (4) and (5), giving

$$
\begin{array}{r}
\frac{1}{2} \rho d\left(u^{2}+v^{2}\right)+\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y=0 \\
\frac{1}{2} \rho d\left(u^{2}+v^{2}\right)+d p=0
\end{array}
$$

which integrates into the general Bernoulli equation

$$
\begin{equation*}
\frac{1}{2} \rho V^{2}+p=\text { constant } \equiv p_{o} \quad \text { (along a streamline) } \tag{6}
\end{equation*}
$$

where $V^{2}=u^{2}+v^{2}$ is the square of the speed. For the 3 -D case the final result is exactly the same as equation (6), but now the w velocity component is nonzero, and hence $V^{2}=$ $u^{2}+v^{2}+w^{2}$.

Irrotational Flow

Because of the assumptions used in the derivations above, in particular the streamline relation (3), the Bernoulli Equation (6) relates p and V only along any given streamline. Different streamlines will in general have different p_{o} constants, so p and V cannot be directly related between streamlines. For example, the simple shear flow on the left of the figure has parallel flow with a linear $u(y)$, and a uniform pressure p. Its p_{o} distribution is therefore parabolic as shown. Hence, there is no unique correspondence between velocity and pressure in such a flow.

However, if the flow is irrotational, i.e. if $\vec{V}=\nabla \phi$ and $V^{2}=|\nabla \phi|^{2}$, then p_{o} takes on the same value for all streamlines, and the Bernoulli Equation (6) becomes usable to relate p and V in the entire irrotational flowfield. Fortunately, a flowfield is irrotational if the upstream flow is irrotational (e.g. uniform), which is a very common occurance in aerodynamics. From the uniform far upstream flow we can evaluate

$$
p_{o}=p_{\infty}+\frac{1}{2} \rho V_{\infty}^{2} \equiv p_{o_{\infty}}
$$

and the Bernoulli equation (6) then takes the more general form.

$$
\begin{equation*}
\frac{1}{2} \rho V^{2}+p=p_{o_{\infty}} \quad \text { (everywhere in an irrotational flow) } \tag{7}
\end{equation*}
$$

Uses of Bernoulli Equation

Solving potential flows

Having the Bernoulli Equantion (7) in hand allows us to devise a relatively simple two-step solution strategy for potential flows.

1. Determine the potential field $\phi(x, y, z)$ and resulting velocity field $\vec{V}=\nabla \phi$ using the
governing equations.
2. Once the velocity field is known, insert it into the Bernoulli Equation to compute the pressure field $p(x, y, z)$.

This two-step process is simple enough to permit very economical aerodynamic solution methods which give a great deal of physical insight into aerodynamic behavior. The alternative approaches which do not rely on Bernoulli Equation must solve for $\vec{V}(x, y, z)$ and $p(x, y, z)$ simultaneously, which is a tremendously more difficult problem which can be approached only through brute force numerical computation.

Venturi flow

Another common application of the Bernoulli Equation is in a venturi, which is a flow tube with a minimum cross-sectional area somewhere in the middle.

Assuming incompressible flow, with ρ constant, the mass conservation equation gives

$$
\begin{equation*}
A_{1} V_{1}=A_{2} V_{2} \tag{8}
\end{equation*}
$$

This relates V_{1} and V_{2} in terms of the geometric cross-sectional areas.

$$
V_{2}=V_{1} \frac{A_{1}}{A_{2}}
$$

Knowing the velocity relationship, the Bernoulli Equation then gives the pressure relationship.

$$
\begin{equation*}
p_{1}+\frac{1}{2} \rho V_{1}^{2}=p_{o}=p_{2}+\frac{1}{2} \rho V_{2}^{2} \tag{9}
\end{equation*}
$$

Equations (8) and (9) together can be used to determine the inlet velocity V_{1}, knowing only the pressure difference $p_{1}-p_{2}$ and the geometric areas. By direct substution we have

$$
V_{1}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[\left(A_{1} / A_{2}\right)^{2}-1\right]}}
$$

A venturi can therefore by used as an airspeed indicator, if some means of measuring the pressure difference $p_{1}-p_{2}$ is provided.

