
16.001/16.002 Unified Engineering I, II

Fall 2006

Problem Set 6

Name: \qquad

Due Date: 10/17/2006

	Time Spent (min)
F15	
M6.1	
M6.2	
M6.3	
Study Time	

[^0]The potential and streamfunction of a freestream + source flow are given by

$$
\begin{aligned}
& \phi(x, y)=V_{\infty} x+\frac{\Lambda}{2 \pi} \ln \sqrt{x^{2}+y^{2}} \\
& \psi(x, y)=V_{\infty} y+\frac{\Lambda}{2 \pi} \arctan (y / x)
\end{aligned}
$$

or alternatively,

$$
\begin{aligned}
\phi(r, \theta) & =V_{\infty} r \cos \theta+\frac{\Lambda}{2 \pi} \ln r \\
\psi(r, \theta) & =V_{\infty} r \sin \theta+\frac{\Lambda}{2 \pi} \theta
\end{aligned}
$$

These assume the source is at the origin. The corresponding streamline pattern is shown on page 3 of the F15 notes. Assume that $V_{\infty}=1, \Lambda=1$, for questions a) ...d) below.
a) Determine the x, y location of the stagnation point.
b) For the dividing streamline passing through the stagnation point, determine the numerical value of the streamfunction ψ as given by one of the above expressions.
c) Determine the y location of the stagnation streamline at $x=0$ (directly above the source).
d) At the x, y location found in c), determine the surface slope $d y / d x$ of the stagnation streamline.
e) Answer a) \ldots d) again for the case of a doubled source strength, $V_{\infty}=1, \Lambda=2$. It's OK to just write down the answers, by inspection of your previous work.

Unified Engineering Problem Set
Week 6 Fall, 2006

Lectures: M12, M13
Units: M2.1, U-A (part)

M6.1 (5 points) Write out the succinct tensor equation that describes the following notation:

M6.2 (5 points) For the following sets of equations, write the tensorial equation that represents the equations. Be sure to explain all steps:
(a) $a_{11} q_{1} q_{1}+a_{21} q_{2} q_{1}+a_{12} q_{1} q_{2}+a_{22} q_{2} q_{2}=f_{1} g_{1}+f_{2} g_{2}$
(b) $R_{1}=b_{11} \sin \pi x$
$R_{2}=b_{22} \sin 2 \pi x$
$\mathrm{R}_{3}=\mathrm{b}_{33} \sin 3 \pi x$

M6.3 (10 points) A second axis system is defined by rotating the $x_{2}-x_{3}$ plane by an angle \square of 30° about the x_{1} axis. A force vector, \underline{E} is described in the original axis system as (NOTE: The vector is unitless):

$$
\underline{\mathrm{F}}=8 \underline{\underline{i}}_{1}-5 \underline{\mathrm{i}}_{2}+3 \underline{\underline{i}}_{3}
$$

(a) Determine the expression for the vector in the rotated coordinate system.
(b) Prove, by some means, that these two expressions are equivalent.

[^0]: Announcements:

