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Problem T4 (Unified Thermodynamics): SOLUTIONS

a) Describe the energy exchange processes in the device in terms of heat, work and various forms

of energy. (LO’s #1, #2)

External work is done on the upper chamber by the weight.  The potential energy of the weight is

reduced and the internal energy of the gas in the upper chamber is increased.  The process is not

quasi-static.  Then heat is gradually transferred from the upper chamber to the lower chamber.

During this process the internal energy of the upper chamber is decreased and the internal energy

of the lower chamber is increased.  As the heat is transferred from the upper chamber, work

continues to be done on the upper chamber since the piston is free to move (and the potential

energy of the weight continues to decrease).  When the processes are over, the surroundings have

provided energy (from the change in potential energy of the weight).  The two chambers have

received the energy, and it appears as increased internal energy of each of the chambers.

b) What processes will you use to model this system?  Why?

(LO’s #2, #4, #5)

The first process is not quasi-static but it is adiabatic because we expect pressure to equilibrate

faster than the time it takes for appreciable heat transfer to occur.  Therefore the upper chamber

should be modeled as adiabatic with the work determined by considering the external pressure

times the change in volume.  After this first relatively fast process, we can assume that the heat

transfer takes place more slowly.  It is no longer adiabatic (both chambers have heat transfer with

one anther).  But the upper chamber undergoes constant pressure cooling since the piston is free to

move, but the weight remains on it.  Since the cooling is relatively slow we can assume that the

process in the upper chamber is quasi-static in terms of evaluating the work as pdv.  The process in

the lower chamber is constant volume heating (no work).

c) What is the temperature the gas in the upper chamber comes to shortly after the instantaneous

dropping of the weight? (LO #4)

The process is an impulsive compression (not quasi-static).  You are given the initial state.  You are

told it is an adiabatic process, and you know the external pressure that is applied.  The first law with

q=0 becomes:
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u = w = pext (v2 v1) or cv(T2 T1) = pext (v2 v1)

You know T1, v1, but not T2 and v2.  However you know from the ideal gas law that

v2 =
RT2
p2

=
RT2
pext

since p2 = pext when the system comes to pressure equilibrium.  Therefore,
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 d) What is the temperature the gas in the lower chamber comes to when the whole system

eventually reaches thermodynamic equilibrium? (LO #4)

The upper chamber slowly cools in a constant pressure cooling process.  The lower chamber slowly
heats in a constant volume heating process.  Other than the rigid copper wall separating the two
chambers everything else is thermally-insulated, so the heat transferred from the upper chamber is
equal to the heat transferred to the lower chamber.

The easiest way to do this is to use two different forms of the first law for the two chambers.

du = q pdv  is convenient for the constant volume process in the lower chamber

dh = q + vdp  is convenient for the constant pressure process in the upper chamber

So for the lower chamber cv T3lower T2lower( ) = q since volume is constant

and for the upper chamber cp T3upper T2upper( ) = q since pressure is constant

Here I have assigned state 2 as the state right after the upper chamber comes to pressure
equilibrium.  For the lower chamber, this is the same as state 1 (for my model, I assumed that no
appreciable heat is transferred to the lower chamber during the first process).

The heat that leaves the upper chamber is the same magnitude, but opposite in sign from that which
is added to the lower chamber.  So with the addition of a negative sign, we can equate the two first
law expressions.

cp T3upper T2upper( ) = cv T3lower T2lower( )

and we know that T2lower = T1=300K, and T2upper=1072K from above, and T3upper=T3lower since the
system comes to thermal equilibrium!

1003.5J /kgK T3lower / upper 1072K( ) = 716.5J /kgK T3lower / upper 300K( )

So T3upper = T3lower = 750.5K
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Problem S1 (Signals and Systems) SOLUTION

1. Consider the system of equations

1x + 2y + 2z = 3
3x + 2y + 1z = 2
1x + 3y + 3z = 4

Solve for x, y, and z, in three separate ways.

(a) Determine x, y, and z using (symbolic) elimination of variables.
To solve by eliminating variables, solve for x in terms of y and z, using the first
equation, so that

x = 3 − 2y − 2z (1)

Plug this into the second and third equations, and simplify, to obtain

−4y − 5z = −7
y + z = 1

Solve the first of these for y, so that

y =
7
4
− 5

4
z (2)

Plug this into the second to obtain

−1
4

z = −3
4

so that z = 3. Plug this back into Equation (2) to obtain y = −2. Finally, plug
both back into Equation (1) to obtain x = 1. This result is correct, and even
organized, but a little bit prone to error, especially as the variable names are
written over and over.

(b) Determine x, y, and z by Gaussian reduction.
Form the array that describes the problem: 1 2 2 3

3 2 1 2
1 3 3 4


Subtract 3 times the first row from the second; subtract the first row from the
third to obtain  1 2 2 3

0 −4 −5 −7
0 1 1 1


Divide the second row by -4:  1 2 2 3

0 1 5
4

7
4

0 1 1 1


1



Subtract the second row from the third: 1 2 2 3
0 1 5

4
7
4

0 0 −1
4 −3

4


Divide the last row by −1/4:  1 2 2 3

0 1 5
4

7
4

0 0 1 3


Back substitute to obtain z = 3, y = −2, x = 1.
In practice, we don’t write the array over and over — we instead modify the rows
in place, and cross out the old rows.

(c) Determine x, y, and z using Cramer’s rule.
Cramer’s rule says that the solution for x is given by

x =

∣∣∣∣∣∣∣
3 2 2
2 2 1
4 3 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 2 2
3 2 1
1 3 3

∣∣∣∣∣∣∣
=

3 · 2 · 3 + 2 · 1 · 4 + 2 · 2 · 3 − 4 · 2 · 2 − 3 · 1 · 3 − 3 · 2 · 2
1 · 2 · 3 + 2 · 1 · 1 + 2 · 3 · 3 − 1 · 2 · 2 − 3 · 1 · 1 − 3 · 3 · 2

= 1

Similarly,

y =

∣∣∣∣∣∣∣
1 3 2
3 2 1
1 4 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 2 2
3 2 1
1 3 3

∣∣∣∣∣∣∣
= −2

z =

∣∣∣∣∣∣∣
1 2 3
3 2 2
1 3 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 2 2
3 2 1
1 3 3

∣∣∣∣∣∣∣
= 3

Of course, this solution hides the pain of finding the last two determininants.

(d) Which method is fastest?
For this problem, with n = 3, row reduction and Cramer’s rule are about the
same speed. However, for larger n, row reduction is much better.

2. Consider the system of equations

2x + 3y + 9z = 1
5x − 3y − 3z = 6
2x + 1y + 4z = 2

2



This time, solve for x, y, and z, using only Gaussian elimination.

Write the equation in array format: 2 3 9 1
5 −3 −3 6
2 1 4 2


Divide first row by 2:  1 3/2 9/2 1/2

5 −3 −3 6
2 1 4 2


Subtract 5 times first row from second row and 2 times first row from third: 1 3/2 9/2 1/2

0 −21/2 −51/2 7/2
0 −2 −5 1


Divide second row by −21/2:  1 3/2 9/2 1/2

0 1 17/7 −1/3
0 −2 −5 1


Add twice the second row to the third: 1 3/2 9/2 1/2

0 1 17/7 −1/3
0 0 −1/7 1/3


Divide third row by −1/7:  1 3/2 9/2 1/2

0 1 17/7 −1/3
0 0 1 −7/3


Back substitute to obtain z = −7/3, y = −1/3 − (17/7)(−7/3) = 16/3, x = 1/2 −
(3/2)(16/3) − (9/2)(−7/3) = 3.
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Problem S2 (Signals and Systems) SOLUTION

1. Label the circuit as below. Note: For each resistor, labeling of the +/− terminals
is arbitrary, but the current must be into the + terminal. If you used a different
labeling, your final answer may differ by a sign.

2. KVL gives

−v1 + v2 + v4 = 0 (left loop)
−v3 − v4 + v5 = 0 (right loop)

3. KCL gives

i1 + i2 = 0 (upper left node)
i4 − i2 − i3 = 0 (upper middle node)

i3 + i5 = 0 (upper right node)
−i1 − i4 − i5 = 0 (lower node)

Note that one of the above equations is redundant — any three form a linearly inde-
pendent set of equations.

4. The constitutive laws are

v1 = V1 = 7 V
v2 = R2I2 = (1 Ω)I2

v3 = R3I3 = (2 Ω)I3

v4 = R4I4 = (2 Ω)I4

v5 = V5 = 2 V

1



5. There are 10 equations (2 from KVL, 3 from KCL, 5 consitutive relations) and 10
unknowns; hence, we should be able to solve uniquely for each variable. The unknowns
can be solved for using, for example, row reduction. The result is

v1 = 7 V, i1 = −3 A
v2 = 3 V, i2 = 3 A
v3 = −2 V, i3 = −1 A
v4 = 4 V, i4 = 2 A
v5 = 2 V, i5 = 1 A

2
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