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Problem T4 (Unified Thermodynamics): SOLUTIONS

a) Describe the energy exchange processes in the device in terms of heat, work and various forms
of energy. (LO’s #1, #2)

External work is done on the upper chamber by the weight. The potential energy of the weight is
reduced and the internal energy of the gas in the upper chamber is increased. The process is not
quasi-static. Then heat is gradually transferred from the upper chamber to the lower chamber.
During this process the internal energy of the upper chamber is decreased and the internal energy
of the lower chamber is increased. As the heat is transferred from the upper chamber, work
continues to be done on the upper chamber since the piston is free to move (and the potential
energy of the weight continues to decrease). When the processes are over, the surroundings have
provided energy (from the change in potential energy of the weight). The two chambers have

received the energy, and it appears as increased internal energy of each of the chambers.

b) What processes will you use to model this system? Why?
(LO’s #2, #4, #5)

The first process is not quasi-static but it is adiabatic because we expect pressure to equilibrate
faster than the time it takes for appreciable heat transfer to occur. Therefore the upper chamber
should be modeled as adiabatic with the work determined by considering the external pressure
times the change in volume. After this first relatively fast process, we can assume that the heat
transfer takes place more slowly. It is no longer adiabatic (both chambers have heat transfer with
one anther). But the upper chamber undergoes constant pressure cooling since the piston is free to
move, but the weight remains on it. Since the cooling is relatively slow we can assume that the
process in the upper chamber is quasi-static in terms of evaluating the work as pdv. The process in

the lower chamber is constant volume heating (no work).

¢) What is the temperature the gas in the upper chamber comes to shortly after the instantaneous
dropping of the weight? (LO #4)

The process is an impulsive compression (not quasi-static). You are given the initial state. You are
told it is an adiabatic process, and you know the external pressure that is applied. The first law with

g=0 becomes:



Au = -w = ~Pext (VZ - Vl) or CV(T2 - Tl) = ~Pext (V2 - Vl)

You know T, v,, butnot T, and v,. However you know from the ideal gas law that

RT, RT, . ey
Vy=—== since p, = p,,, when the system comes to pressure equilibrium. Therefore,
| %) Pext
RT RT, RT RT
CV(T2 - Tl) = ~Pext (—2 - Vl) = ~Pext (—2 - —1) = Pext —L- RT2
ext Pext P1 P1
RT RT
S0 ¢TI, —¢,T; = Pext p—l —RT, or (CV + R)T2 = Pext p—l +c, T
1 1

(cy +c,-c,)T, =T1(%+cv) or T, =£(%+cv)

Pi Cp Pi

287 /kgK (1000x10° Pa)
100x10°Pa

300K

_ -1072K
1003.5J/kgK

+716.57/kgK

2




d) What is the temperature the gas in the lower chamber comes to when the whole system

eventually reaches thermodynamic equilibrium? (LO #4)

The upper chamber slowly cools in a constant pressure cooling process. The lower chamber slowly
heats in a constant volume heating process. Other than the rigid copper wall separating the two
chambers everything else is thermally-insulated, so the heat transferred from the upper chamber is
equal to the heat transferred to the lower chamber.

The easiest way to do this is to use two different forms of the first law for the two chambers.
du = 0q — pdV is convenient for the constant volume process in the lower chamber

dh = 8q + vdp is convenient for the constant pressure process in the upper chamber

So for the lower chamber o (T3 -T, ) =0q since volume is constant
lower lower

and for the upper chamber ) =0q since pressure is constant

Cp (T3upper a Tzupper

Here I have assigned state 2 as the state right after the upper chamber comes to pressure
equilibrium. For the lower chamber, this is the same as state 1 (for my model, I assumed that no
appreciable heat is transferred to the lower chamber during the first process).

The heat that leaves the upper chamber is the same magnitude, but opposite in sign from that which

is added to the lower chamber. So with the addition of a negative sign, we can equate the two first
law expressions.

Cp (T3upper - Tzupper ) = _CV (T?’lower a Tzlower )

and we know that T,, . = T,=300K, and T, . =1072K from above, and T, ..=T;,. since the
system comes to thermal equilibrium!
1003.5J/kgK (T, ~1072K ) =~716.5J/kgK (T, - 300K
lower / upper lower / upper
So T3upper = T3lower = 7505K
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Unified Engineering I Fall 2006

Problem S1 (Signals and Systems) SOLUTION

1. Consider the system of equations

lr + 2y + 2z = 3
3z + 2y + 1lz =
lx + 3y + 32 = 4

[\

Solve for x, y, and z, in three separate ways.

(a)

Determine z, y, and z using (symbolic) elimination of variables.

To solve by eliminating variables, solve for x in terms of y and z, using the first
equation, so that
r=3—-2y—2z (1)

Plug this into the second and third equations, and simplify, to obtain

-4y — Sz = —7
y + 2z = 1

Solve the first of these for ¥, so that

7 5
= - — — 2
Vy=1"17 (2)
Plug this into the second to obtain
1 3
—_—— = ——
4 4

so that z = 3. Plug this back into Equation (2) to obtain y = —2. Finally, plug
both back into Equation (1) to obtain z = 1. This result is correct, and even
organized, but a little bit prone to error, especially as the variable names are
written over and over.

Determine z, y, and z by Gaussian reduction.

Form the array that describes the problem:

1
3
1

W NN
W = N
N W

Subtract 3 times the first row from the second; subtract the first row from the
third to obtain

1 2 2 3
0 -4 —-5|-7
0 1 1 1
Divide the second row by -4:
1 2 213
5|7
01 111



Subtract the second row from the third:

S O =
O = N
Ot DN

Divide the last row by —1/4:

O O =
O = N

N

= o DO

=T OO

O~ o

[aN[SY]

Back substitute to obtain z =3, y = -2, x = 1.

In practice, we don’t write the array over and over — we instead modify the rows

in place, and cross out the old rows.

(c) Determine z, y, and z using Cramer’s rule.

Cramer’s rule says that the solution for x is given by

3.2 2
2 21
|4 33| 3-2:342-1-4+2-2.3-4-2.2-3-1-3-3-2-2
"T11 2 2] 1-23+21.142.3.3-1.2.2-3-1-1-3-3-2
321
1 3 3
Similarly,
1 3 2
321
1 4 3 )
YT 2 2|
321
1 3 3
1 2 3
3.2 2
13 4
z= =3
12 2
321
133

Of course, this solution hides the pain of finding the last two determininants.

(d) Which method is fastest?

For this problem, with n = 3, row reduction and Cramer’s rule are about the
same speed. However, for larger n, row reduction is much better.

2. Consider the system of equations

2¢ + 3y +
or — 3y —
2 + ly +

9z
3z
4z



This time, solve for z, y, and z, using only Gaussian elimination.

Write the equation in array format:

2 3 9|1
5 =3 =316
2 1 412

Divide first row by 2:
1 3/2 9/2]1/2
5 =3 -3 6
2 1 4 2

Subtract 5 times first row from second row and 2 times first row from third:

1 3/2  9/2 |1/2
0 —21/2 —51/2|7/2
0 -2 -5 | 1

Divide second row by —21/2:

1 3/2 9/2 | 1/2

0o 1 17/7|-1/3

0 -2 -5 1
Add twice the second row to the third:

1 3/2 9/2 1/2

0 1 17/7 | —=1/3

0 o0 -—=1/7| 1/3

Divide third row by —1/7:

—_

3/2 9/2 | 1/2
1 17/7|-1/3
0o 0 1 |[-7/3

[en}

Back substitute to obtain z = —=7/3, y = —1/3 — (17/7)(=7/3) = 16/3, = = 1/2 —
(3/2)(16/3) — (9/2)(=7/3) = 3.



Unified Engineering I Fall 2006
Problem S2 (Signals and Systems) SOLUTION
1. Label the circuit as below. Note: For each resistor, labeling of the +/— terminals

is arbitrary, but the current must be into the + terminal. If you used a different
labeling, your final answer may differ by a sign.

2. KVL gives

—v1 +vg+v4 =0 (left loop)
—v3 —vg+vs =0 (right loop)

3. KCL gives

i1 +1i2 =0 (upper left node)

(
iy —i2 — i3 =0 (upper middle node)
i3 +1i5 =0 (upper right node)
(

—i1 —i4 —1i5 =0 (lower node)

Note that one of the above equations is redundant — any three form a linearly inde-
pendent set of equations.

4. The constitutive laws are

v, = V=7V
vs = Roly=(1Q)I
vy = Rsly=(2Q)I;
vy = Ryly=(2Q)14
vs = V=2V



5. There are 10 equations (2 from KVL, 3 from KCL, 5 consitutive relations) and 10
unknowns; hence, we should be able to solve uniquely for each variable. The unknowns
can be solved for using, for example, row reduction. The result is

v =7V, i1 =—-3A
v9 =3V, o =3A
vg=-2V, ig=—-1A
vy =4V, iy =2A
vg =2V, i5=1A
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