Tz SLUTIUNS
a) GIVEN: $T_{1}=600 \mathrm{~K}, \quad T_{2}=300 \mathrm{~K}, \eta_{1}=\eta_{2}+0.2$

$$
\begin{aligned}
& \eta_{1}=1-\frac{T_{i}}{T_{1}} ; \quad \eta_{2}=1-\frac{T_{2}}{T_{i}} ; \quad \eta_{1}=\eta_{2}+0.2 \\
& \Longrightarrow 1-\frac{T_{1}}{T_{1}}=1-\frac{T_{2}}{T_{i}}+0.2 \Rightarrow T_{i}^{2}+0.2 T_{1} T_{i}-T_{1} T_{2}=0 \\
& \Longrightarrow T_{i}=-0.1 T_{1}+\sqrt{\left(0.1 T_{1}\right)^{2}+T_{1}} \Rightarrow T_{i}=368.5 \mathrm{~K}
\end{aligned}
$$

b) GIVEN: $T_{\text {cLD }}=243 \mathrm{~K}, T_{\text {itoT }}=473 \mathrm{~K}, T_{A M B}=303 \mathrm{~K}$

For a carnut cyele, the heat adosi and rejected IS RELAESD TO THE RESERVOIR TEMPERTURE:
$\frac{Q_{H}}{T_{H}}+\frac{Q_{L}}{T_{2}}=0 \quad$ AND THE EFficiency is $\quad \eta=1-\frac{T_{L}}{T_{+1}}$
IST LAN FOR ENGINE 1

$$
\begin{aligned}
& \Delta U=Q-W=0, \quad W=Q \quad \text { OR }\left|W_{\text {EHG }}\right|=\left|Q_{H}\right|-\left|Q_{A M B 1}\right| \\
& \left|\frac{Q_{H}}{T_{H}}\right|=\left|\frac{Q_{A M B}}{T_{A M B}}\right| \quad \therefore\left|Q_{A M B I}\right|=\frac{T_{A M B}}{T_{H}}\left|Q_{H}\right| \\
& \therefore\left|W_{E N B 1}\right|=\left|Q_{H}\right|\left(1-\frac{T_{\text {amb }}}{T_{H}}\right)
\end{aligned}
$$

$1^{\text {ST LAW FOR ENGNE } 2} \quad\left|W_{\text {eng2 }}\right|+\left|Q_{L}\right|=\left|Q_{\text {AMB2 }}\right|$

$$
\left|\frac{Q_{\text {anBZ }}}{T_{\text {AMB }}}\right|=\left|\frac{Q_{L}}{T_{L}}\right| \therefore\left|W_{\text {engaz }}\right|=\left(Q_{L}\right)\left[\frac{\left.T_{A M B}-1\right]}{T_{L}}\right]
$$

(2) of (2)

$$
\begin{aligned}
& \left|W_{\text {eng1 }}\right|=\left|W_{\text {eug2 }}\right| \\
& \therefore \quad\left|Q_{H}\right|\left(1-\frac{T_{\text {amb }}}{T_{H}}\right)=\left|Q_{2}\right|\left(\frac{T_{\text {amb }}}{T_{L}}-1\right) \\
& \frac{Q_{H}}{Q_{2}}=\frac{\left(T_{\text {amb }}-1\right)}{\left(1-\frac{T_{\text {anb }}}{T_{H}}\right)}=0.687
\end{aligned}
$$

T8 SOLTIONS

GIVEN: $\quad q_{H}=2400 \mathrm{~kJ} / \mathrm{kg} \quad 2 / 3$ AT $\quad V=$ cunst, $1 / 3$ AT $p=$ const.

$$
T_{1}=293 \mathrm{~K}, \quad P_{1}=90 \times 10^{3} \mathrm{~Pa}, \quad \Gamma=7=\frac{V_{1}}{V_{2}}=\frac{V_{4}}{V_{3}}
$$

a)

LEG	Δu	q	w
$1-2$	+	0	+
$2-3$	+	+	0
$3-3^{1}$	+	+	+
$3-4$	-	0	-
$4-1$	-	-	0

$A 1 R$, so $C_{V}=716.5 \mathrm{~J} / \mathrm{kg}-\mathrm{k}, \quad C_{p}=1003.5 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \quad R=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
(b)

SIATE (1): $T_{1}=293 \mathrm{~K}, P_{1}=90 \times 10^{3} \mathrm{~Pa}_{a} \quad \therefore \quad V_{1}=\frac{R T_{1}}{P_{1}}=0.934 \frac{\mathrm{~m}^{3}}{\mathrm{k}}$,
SHIL (2): $V_{2}=\frac{1}{7} V_{1}=0.133 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$
$q-s$, adiab., so $\frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} \Rightarrow p_{2}=1372 \times 10^{3} p_{1}$
AND $\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} \Rightarrow T_{2}=638 \mathrm{~K}$
STAFE (3) 算道

$$
\begin{aligned}
& v_{3}=v_{2}=0.133^{3} / \mathrm{kg} \quad p_{3} ? \\
& p_{3}^{\prime}=p_{3} \\
& q_{2-3+3-3}= 2400 \frac{\mathrm{~kJ}}{\mathrm{ky}}=q_{2-3}+q_{3-3}, ~ t 2 q_{2} 3 \\
& q_{2-3}=1600 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad q_{33} \cdot=800 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

Pracess $2-3$ is const icl $\therefore \quad \omega=0$

$$
\begin{aligned}
& \Rightarrow \Delta u=c_{v} \Delta T=\varphi_{2}-3=1600 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& 716.5\left(T_{3}-638 \mathrm{~K}\right)=1600 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \Rightarrow T_{3}=2871 \mathrm{~K}
\end{aligned}
$$

FRUM IDEA GAS $P_{3}=\frac{R T_{3}}{V_{3}}=\frac{287 \cdot 2871}{0.133}-6195 \times 10^{3} P_{9}$
State (3.): $P_{3}^{\prime}=6195 \times 10^{3} \mathrm{~Pa}, T_{3}^{\prime} ?, V_{3}^{\prime} ?$

$$
\Delta u=C_{v} \Delta T=q-\omega \quad C_{v}\left(T_{3}^{\prime}-T_{3}\right)=800 \frac{k 5}{k_{y}}-P_{5}\left(v_{3}^{\prime} \cdot v_{3}^{\prime}\right)
$$

Also kuidu relationship betwese V_{3}^{\prime} ! T_{3}^{\prime} (ldatl gas)

$$
\begin{aligned}
& V_{3^{\prime}}=\frac{R T_{3}{ }^{\prime}}{P_{3}} \\
& 716.5\left(T_{3}{ }^{\prime}-2871\right)=800 \times 10^{3}-6195 \times 10^{3}\left(\frac{287 T_{3}^{\prime}}{6195 \times 10^{3}}-0.133\right) \\
& T_{3}{ }^{\prime}=3668 \mathrm{~K} \quad V_{3}{ }^{\prime}=0.17 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}, P^{\prime}=6195 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

STATE(4)

$$
\begin{aligned}
& \text { (4) } V_{4}=V_{1}=0.934 \frac{\mathrm{~m}^{3}}{\mathrm{ky}_{y}} \quad \text { AND } \mathrm{Pa} \\
& \text { su } \frac{T_{4}}{T_{3}}=\left(\frac{V_{3}^{\prime}}{V_{4}}\right)^{r-1} \Rightarrow T_{4}=1855 \mathrm{~K} \\
& \xi \\
& \frac{P_{4}}{P_{5}^{\prime}}=\left(\frac{V_{3}^{\prime}}{V_{4}}\right)^{r} \Rightarrow P_{4}=570 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

AND Prucess is

$$
q-s \text {, adiab }
$$

c)

$$
\begin{array}{r}
\eta=\frac{W}{Q_{1 N}}=\frac{\frac{q_{2-3}+q_{3-3^{\prime}}+q_{4-1}}{q_{2-3}+q_{3 \cdot 3^{\prime}}}}{} \\
q_{2-3}+q_{3-3^{\prime}}=2400 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

pst law $\Delta u=q-\omega \quad q_{A-1}=C_{v}\left(T_{1}-T_{4}\right)+0 \quad$ (constr. vol, weak),

$$
=716.5(293-1855)
$$

$$
\varphi_{4-1}=-1119 \mathrm{~kJ} / \mathrm{kg}
$$

$\eta=\frac{2400-1119}{2400}=0.53$
d) FOR OTTO $y=1-\frac{1}{r^{\gamma-1}}=1-\frac{1}{7^{0.4}}$

$$
M_{\text {TR }}=54 \%
$$

SOLUTONS BY WA ITZ
a) LEG $1-2$

LEE $1-2$ g-S AOHBATIC
dompression

$$
q=0, \quad \Delta u=C_{v}\left(T_{2}-T_{1}\right)=\not f^{0}-\omega \quad \omega=-C_{v}\left(T_{2}-T_{1}\right)
$$

LEG 2-3
G-S

$$
\begin{array}{ll}
\Delta u=0=q-\omega \quad q=\omega & \omega=R T_{2} \ln \frac{V_{3}}{V_{2}} \\
& \omega_{5}=R\left(T_{3}-T_{2}\right)=0 \\
& \omega_{5}=\omega=R T_{2} \ln \frac{V_{3}}{V_{2}}
\end{array}
$$

Q-5 AOABATIC
Expansion

$$
\begin{aligned}
q=0 \quad \Delta u=C_{v}\left(T_{A}-T_{3}\right)=\hat{q}-\omega \quad \therefore \quad & \omega=-C_{V}\left(T_{4}-T_{3}\right) \\
& \omega_{5}=-C_{p}\left(T_{4}-T_{3}\right) \\
& \omega_{f}=R\left(T_{4}-T_{3}\right)
\end{aligned}
$$

LEG 4-1 $\quad \begin{aligned} & \text {-S CONSTP } \\ & \text { COOLNG }\end{aligned}$

$$
\begin{gathered}
d h_{4}=\delta q+v d p \quad \therefore q=C_{p}\left(T_{1}-T_{4}\right), \quad W_{f}=R\left(T_{1}-T_{4}\right) \\
\Delta u=q-\omega \Rightarrow C_{v}\left(T_{1}-T_{4}\right)=C_{p}\left(T_{1}-T_{4}\right)-\omega \\
\therefore \quad \omega=\left(C_{p}-C_{v}\right)\left(T_{1}-T_{4}\right)=R\left(T_{1}-T_{4}\right)=W_{f} \\
\therefore \quad W_{5}=0
\end{gathered}
$$

$$
\text { b) } \begin{aligned}
& \text { NET WORK }=-C_{V}\left(T_{2}-T_{1}\right)+R T_{2} \ln \frac{V_{3}}{V_{2}}-C_{V}\left(T_{4}-T_{3}\right)+R\left(T_{1}-T_{4}\right) \\
&- \text { NET HEAT }=R T_{1} \ln \frac{W_{3}}{V_{2}}+C_{P}\left(T_{1}-T_{4}\right) \\
& O ?=-C_{V}\left(T_{2}-T_{1}\right)-C_{V}\left(T_{4}-T_{3}\right)+R\left(T_{1}-T_{4}\right)-C_{P}\left(T_{1}-T_{4}\right) \\
& O ?\left.=-C_{1}\left(T_{2}\right)+C_{4} T_{1}-C_{C} T_{4}+C_{V} T_{3}-C_{3}+C_{9} T_{1}-C_{1} T_{1}-C_{P} T_{4}+C_{1} T_{4}\right) \\
& O ?=C_{V}\left(T_{3}-T_{2}\right) \quad T_{3}=T_{2}+C T_{4} \\
& \text { YES NE WORK }- \text { NET HEAT }=0 \quad \therefore Q=W
\end{aligned}
$$

c)

$$
\begin{aligned}
\text { NET FLow work } & =R\left(T_{2}-T_{1}\right)+R\left(T_{4}-T_{3}\right)+R\left(T_{1}-T_{4}\right) \\
& =R\left(T_{2}-T_{3}\right)=0 \quad \text { swiNE } T_{2}=T_{3}
\end{aligned}
$$

NET SHAFT WORK $=-C_{p}\left(T_{2}-T_{1}\right)+R T_{2} \ln \frac{V_{3}}{V_{2}}-C_{p}\left(T_{4}-T_{3}\right)$

$$
\begin{aligned}
\text {-NET WORK } & =-C_{V}\left(T_{2}-T_{1}\right)+R T_{2} \ln \frac{V_{3}}{V_{2}}-C_{V}\left(T_{4}-T_{3}\right)+R\left(T_{1}-T_{4}\right) \\
& = \pm\left(C_{P}-C_{V}\right)\left(T_{2}-T_{1}\right)-\left(C_{P}-C_{1}\right)\left(T_{4}-T_{3}\right)-R\left(T_{1}-T_{4}\right) \\
& =-R\left[T_{2}-T_{1}+T_{4}-T_{3}+T_{1}-T_{4}\right]=-R\left[T_{2}-T_{3}\right]=0
\end{aligned}
$$

$$
\text { NET WORK }=\text { NET SHAFT WORK }
$$

d) THE FLOW WORK IS THE WORK ASSOclatha wITH THE RELATIVE CHANGE IN PRESSURE* VOLUME AS FWID PASSES THROUGH A DEVICE

* note that the above results are general For ANY CLOSED CYCLE: $Q_{\text {cycle }}=W_{\text {cycle }}$

$$
W_{\text {cycle }}=W_{\text {s cycle }}
$$

$$
w_{\text {cycle }}=0
$$

(1) FROM THE SOLUTIONS FOR T7:

$$
\begin{aligned}
& \quad T_{1}=297 \mathrm{~K}, T_{2}=638 \mathrm{~K}, T_{3}=1400 \mathrm{k}, T_{4}=652 \mathrm{~K} \\
& \text { Turbine work }=C_{V}\left(T_{3}-T_{4}\right)=716.5(1400-652)=W=536 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Turbine shaftwork }=C_{P}\left(T_{3}-T_{4}\right)=1003.5(1400-652)=W_{5}=751 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Turbine flow work }=R(652-1400)=W_{f}=-215 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Problem S3 (Signals and Systems) SOLUTION

1. To begin, we must label each of the elements of the circuit with a polarity ($+/-$ signs) in order to be able to speak about the element voltages. Note that this labeling is arbitrary, so you may get an answer with different signs. I have labeled the elements as above. I have also assigned a ground node, labeled the one known node (V_{7}), and labeled the remaining three nodes e_{1}, e_{2}, and e_{3}. Using the node method, the node equations are then, in order,

$$
\begin{aligned}
& \left(G_{1}+G_{2}+G_{5}\right) e_{1} \quad-G_{2} e_{2} \quad-G_{5} e_{3}=I_{8} \\
& -G_{2} e_{1}+\left(G_{2}+G_{3}+G_{4}\right) e_{2} \quad-G_{4} e_{3}=0 \\
& -G_{5} e_{1} \quad-G_{4} e_{2}+\left(G_{4}+G_{5}+G_{6}\right) e_{3}=0
\end{aligned}
$$

Plugging in values, using $G=1 / R$, we have (leaving out the units)

$$
\begin{aligned}
& 3 e_{1} \quad-e_{2} \quad-e_{3}=3 \\
& -e_{1}+1.416 \overline{6} e_{2} \quad-0.16 \overline{6} e_{3}=0 \\
& -e_{1} \quad-0.16 \overline{6} e_{2}+1.416 \overline{6} e_{3}=0
\end{aligned}
$$

Solve using a calculator or Matlab or row reduction, we have that

$$
\begin{aligned}
& e_{1}=\frac{40}{7} \mathrm{~V} \approx 5.7143 \mathrm{~V} \\
& e_{2}=\frac{32}{7} \mathrm{~V} \approx 4.5714 \mathrm{~V} \\
& e_{3}=\frac{32}{7} \mathrm{~V} \approx 4.5714 \mathrm{~V}
\end{aligned}
$$

The element voltages are then found by differencing node potentials:

$$
\begin{aligned}
& v_{1}=V_{7}-e_{1}=-\frac{5}{7} V \\
& v_{2}=e_{1}-e_{2}=\frac{8}{7} V \\
& v_{3}=e_{2}-0=\frac{32}{7} V \\
& v_{4}=e_{2}-e_{3}=0 \mathrm{~V} \\
& v_{5}=e_{1}-e_{3}=\frac{8}{7} V \\
& v_{6}=e_{3}-0=\frac{32}{7} V \\
& v_{7}=5 \mathrm{~V} \\
& v_{8}=0-e_{1}=-\frac{40}{7} V
\end{aligned}
$$

The currents are found from the constitutive relations:

$$
\begin{aligned}
i_{1} & =\frac{v_{1}}{R_{1}}=-\frac{5}{7} \mathrm{~A} \\
i_{2} & =\frac{v_{2}}{R_{2}}=\frac{8}{7} \mathrm{~A} \\
i_{3} & =\frac{v_{3}}{R_{3}}=\frac{8}{7} \mathrm{~A} \\
i_{4} & =\frac{v_{4}}{R_{4}}=\frac{0}{7} \mathrm{~A} \\
i_{5} & =\frac{v_{5}}{R_{5}}=\frac{8}{7} \mathrm{~A} \\
i_{6} & =\frac{v_{6}}{R_{6}}=\frac{10}{7} \mathrm{~A} \\
i_{8} & =I_{8}=3 \mathrm{~A}
\end{aligned}
$$

To find i_{7}, we must apply KCL at the V_{7} node, which implies that $i_{7}+i_{1}=0$, so that $i_{7}=5 / 7 \mathrm{~A}$.
2. The net power is

$$
\sum_{n=1}^{8} i_{n} v_{n}=\left(\frac{-5}{7} \cdot \frac{-5}{7}+\frac{8}{7} \cdot \frac{8}{7}+\frac{8}{7} \cdot \frac{32}{7}+0 \cdot 0+\frac{8}{7} \cdot \frac{8}{7}+\frac{8}{7} \cdot \frac{32}{7}+\frac{-5}{7} \cdot 5+3 \cdot \frac{-40}{7}\right) \mathrm{W}=0 \mathrm{~W}
$$

which is zero by direct calculation.

Unified Engineering I

Fall 2006

Problem S4 (Signals and Systems)

In this problem, you will consider a bit more Tellegen's Theorem, introduced in Problem S3.

1. Make up a set of voltages and currents that satisfy KVL and KCL. For example, leaving out units, take

$$
\begin{aligned}
& v_{1}=-2, \quad v_{2}=-1, \quad v_{3}=5, \quad v_{4}=-4, \quad v_{5}=-5, \quad v_{6}=9, \quad v_{7}=2, \quad v_{8}=-4 \\
& i_{1}=1, \quad i_{2}=-1, \quad i_{3}=-2, \quad i_{4}=1, \quad i_{5}=-2, \quad i_{6}=-1, \quad i_{7}=-1, \quad i_{8}=-4
\end{aligned}
$$

Then

$$
\sum_{n=1}^{8} i_{n} v_{n}=0
$$

as it should be.
2. For any circuit with N nodes, label the nodes $n=1,2, \ldots N$. Define the current flowing through a circuit element from node m to node n to be $i_{m n}$, and the voltage across the element to be $v_{m n}$. Then the total power of the circuit is

$$
\mathbb{P}=\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} i_{m n} v_{m n}
$$

The factor of $\frac{1}{2}$ appears in the sum because the power of each element appears twice, since $i_{m n}=-i_{n m}$, and $v_{m n}=-v_{n m}$. Since KVL holds, we can define node potentials, $e_{1}, e_{2}, \ldots e_{N}$. The element voltages are then given by

$$
v_{m n}=e_{m}-e_{n}
$$

Then the sum becomes

$$
\begin{aligned}
\mathbb{P} & =\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} i_{m n}\left(e_{m}-e_{n}\right) \\
& =\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} i_{m n} e_{m}-\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} i_{m n} e_{n}
\end{aligned}
$$

The sums can be grouped as

$$
\mathbb{P}=\frac{1}{2} \sum_{m=1}^{N} e_{m}\left(\sum_{n=1}^{N} i_{m n}\right)-\frac{1}{2} \sum_{n=1}^{N} e_{n}\left(\sum_{m=1}^{N} i_{m n}\right)
$$

The first term in parentheses is the sum of the currents flowing out of node m, which is zero by KCL. The second term in parentheses is the sum of the currents flowing into node n, which is also zero by KCL. Hence,

$$
\mathbb{P}=0
$$

for any circuit which satisfies KCL and KVL.

