T11 Solutions
(wAilz)
a)

$$
P_{1}=1 \times 10^{6} \mathrm{~Pa}, \quad T_{1}=200 \mathrm{~K}, \quad C_{1}=50 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \dot{m}=100 \mathrm{~kg} / \mathrm{s}
$$

$p_{2}=5 \times 10^{6} \mathrm{~Pa}$ VIa $A \quad q^{-5}$ AOIAB. PROCESS $\therefore P V^{\gamma}=$ CONST.

$$
c_{2}=50 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\therefore q=0
$$

$$
P_{1} V_{1}=R T_{1} \Longrightarrow V_{1}=0.052 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad(R=260 \mathrm{~J} / \mathrm{kg}-\mathrm{k})
$$

$$
p_{1} v_{1}^{\gamma}=p_{2} v_{2}^{\gamma}, \quad \gamma=\frac{c_{p}}{c_{v}}=1.1 \Longrightarrow v_{2}=0.012 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

SFEE

$$
\begin{aligned}
\rightarrow f^{0}-w_{s} & =h_{2}-h_{1}+\frac{c_{2}^{2}}{2}-\frac{c_{1}^{2}}{2} \\
\rightarrow g^{\infty 0}-w & =u_{2}-u_{1}+\frac{c_{2}^{2}}{2}-\frac{c_{1}^{2}}{2} \\
W_{f} & =R\left(T_{2}-T_{1}\right)=W-W_{5}
\end{aligned}
$$

so

$$
\begin{aligned}
& W=-\left[C_{v}\left(T_{2}-T_{1}\right)+\frac{C_{2}^{2}}{2}-\frac{C_{1}^{2}}{2}\right], \quad \frac{P_{2} V_{2}}{R}=T_{2}=2308 \mathrm{~K} \\
& W=-78.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \text { or } \\
& \dot{W}=\dot{W} W=-7.8 \mathrm{MW} \\
& W_{f}=260(230.8-200)=8 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \text { or } \dot{W}_{f}=\dot{W} W_{f}=0.8 \mathrm{MW} \\
& W_{s}=-\left[C_{p}\left(T_{2}-T_{1}\right)+\frac{C_{2}^{2}}{2}-\frac{c_{1}^{2}}{2}\right]=W-W_{f} \\
& W_{s}=-86.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \text { or }
\end{aligned}
$$

b)

$$
\begin{aligned}
& \begin{array}{lll}
C_{2}=50 \mathrm{~m} / \mathrm{s}, & T_{2}=230.8 \mathrm{~K}, & p_{2}=5 \times 10^{6} \mathrm{~Pa} \\
C_{3}=100 \mathrm{~m} / \mathrm{s}, & T_{3}=?, & p_{3}=5 \times 10^{6} \mathrm{~Pa}
\end{array} \quad q_{10}=1300 \mathrm{~kJ} / \mathrm{kg} \\
& q-w_{s}^{s_{s}}=C_{p}\left(T_{3}-T_{2}\right)+\frac{C_{3}^{2}}{2}-\frac{C_{2}^{2}}{2} \quad\left(\begin{array}{l}
\text { NO SHAPe WORK } \\
\text { BUT CAN SqL } \\
\text { FLOW WORK }
\end{array}\right) \\
& 1300 \times 10^{3}=2800\left(T_{3}-230.8\right)+\frac{100^{2}}{2}-\frac{50^{2}}{2} \\
& T_{3}=693.7, \quad V_{3}=\frac{R T_{3}}{P_{3}}=\frac{260(6937)}{5 \times 10^{6}}=0.036 \frac{\mathrm{~kg}}{\mathrm{~kg}} \\
& W_{5}=0 \quad W_{f}=R\left(T_{3}-T_{2}\right) \\
& W_{f}=260(693.7-230.8)=120 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \dot{W}_{f}=1.2 \mathrm{MW}
\end{aligned}
$$

c)

$$
\begin{aligned}
& W_{\text {TURBo WE }}=-W_{S \text { PUMP }}=86.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \square^{\text {ad }} \dot{W}_{S}=8.6 \mathrm{MW} \\
& R^{70}-W_{S}=C_{P}\left(T_{4}-T_{5}\right)+\frac{C_{4}^{2}}{2}-\frac{C_{3}^{2}}{2} \\
& -86.2^{\times 10^{3}}=2800\left(T_{4}-693.7\right)+\frac{120^{2}}{2}-\frac{100^{2}}{2} \\
& T_{4}=662 \mathrm{~K} \\
& W_{f}=R\left(T_{4}-T_{3}\right)=260(662-693.7)=-8.2 \mathrm{~kJ} / \mathrm{kg} \\
& W_{f}=-8.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \text { or } \dot{W}_{f}=-0.82 \mathrm{MW}
\end{aligned}
$$

TIL SOLUTIONS (WAREZ)
GIVEN. $C_{D C}=1000 \mathrm{~J} / \mathrm{kg}^{-K}$

- $C p_{r}=12005 / \mathrm{kg}-k$
- $\dot{m}=30 \mathrm{~kg} / \mathrm{s}$
- stagnation temperature \& pressure profiles
a) Power to drive high Pressure compressor (2C-3) STEADY FLOW ENERGY ERR: $\dot{Q}-\dot{W}_{s}=\dot{\operatorname{m}}\left(h_{T_{36}}-h_{T_{2 C}}\right)$

$$
T_{T_{2 c}}=367 \mathrm{~K}, T_{T_{3}}=810 \mathrm{~K} \quad \dot{W}_{5}=\dot{W} 1000[867-810]=-13.3 \mathrm{MW}
$$

b) heat transfer in combustor

$$
\begin{aligned}
& \dot{Q}-\dot{N}_{5}^{0}=n \Delta h_{T}=30\left[C_{P} T_{T}-C_{P} T_{T_{3}}\right]=30[1200.1532-1000.810] \\
& \mathbb{Q}=30.9 \mathrm{MW}
\end{aligned}
$$

c) $\beta=\frac{\dot{m}_{B}}{\dot{m}_{C}}$, THE FAN IS DRIVEN BY THE LOW PRESSURE TURBINE all massfluigh fan? ASSUMING BOTH ARE ADIABATIC GIVES:

$$
\text { d) PowER TO DRINE FAN }=\dot{m}_{c}\left[C_{P_{T}} T_{T_{5,5}}-C_{P_{T}} T_{T_{5.4}}\right]
$$

$$
=-6 M W
$$

$$
\begin{aligned}
& \left(\dot{m}_{c}+\dot{m}_{B}\right)\left(C_{P_{c}} T_{2.4}-C_{P_{c}} T_{2}\right)=\dot{m}_{c}\left(C_{P_{T}} T_{T_{S, 4}}-\bar{C}_{f} T_{5} .5\right) \\
& \dot{w}_{c}(\beta+1)\left(C_{p_{c}} T_{T_{2 A}}-C_{P_{c}} T_{T_{2}}\right)=\dot{m}_{c}\left(C_{p_{T}} T_{T_{54}-4}-C_{p_{T}} T_{T_{55}}\right) \\
& \beta=\frac{C_{p T}}{C_{p}} \cdot \frac{\left(T_{T_{54}}-T_{T_{5.5}}\right)}{\left(T_{T_{2 A}}-T_{T_{2}}\right)}-1=\frac{1200}{1000} \frac{(1032-865)}{(367-300)}-1=2
\end{aligned}
$$

Problem S5 (Signals and Systems) SOLUTION

The component values are:

$$
\begin{aligned}
R_{1} & =1 \Omega \\
R_{2} & =1 \Omega \\
R_{3} & =4 \Omega \\
R_{4} & =6 \Omega \\
R_{5} & =1 \Omega \\
R_{6} & =6 \Omega \\
I_{8} & =3 \mathrm{~A} \\
V_{7} & =5 \mathrm{~V}
\end{aligned}
$$

Draw the loop currents as shown above. Note that there are three unknown currents, i_{a}, i_{b}, and i_{c}. Applying KVL around each loop results in the equations

$$
\left.\begin{array}{rlrl}
i_{a}: & \left(R_{1}+R_{2}+R_{3}\right) i_{a} & -R_{2} i_{b} & -R_{3} i_{c}
\end{array}=V_{7}=-\left(R_{2}+R_{4}+R_{5}\right) i_{b} \quad-R_{4} i_{c}=-R_{5} I_{8}\right)
$$

Plugging in component values (and ignoring units for now), we have

$$
\begin{aligned}
6 i_{a}-i_{b}-4 i_{c} & =5 \\
-i_{a}+8 i_{b}-6 i_{c} & =-3 \\
-4 i_{a}-6 i_{b}+16 i_{c} & =-18
\end{aligned}
$$

Solving by row reduction, or Matlab, gives

$$
\begin{aligned}
i_{a} & =-\frac{43}{45} \mathrm{~A} \\
i_{b} & =-\frac{19}{9} \mathrm{~A} \\
i_{c} & =-\frac{97}{45} \mathrm{~A}
\end{aligned}
$$

We then obtain

$$
\begin{aligned}
i_{1} & =i_{a}=-\frac{43}{45} \mathrm{~A} \\
v_{1} & =i_{1} R_{i}=-\frac{43}{45} \mathrm{~V} \\
i_{2} & =i_{a}-i_{b}=\frac{52}{45} \mathrm{~A} \\
v_{2} & =i_{2} R_{2}=\frac{52}{45} \mathrm{~V} \\
i_{3} & =i_{a}-i_{c}=\frac{6}{5} \mathrm{~A} \\
v_{3} & =i_{3} R_{3}=\frac{24}{5} \mathrm{~V} \\
i_{4} & =i_{c}-i_{b}=-\frac{2}{45} \mathrm{~A} \\
v_{4} & =i_{4} R_{4}=-\frac{4}{15} \mathrm{~V} \\
i_{5} & =i_{b}+I_{8}=\frac{8}{9} \mathrm{~A} \\
v_{5} & =i_{5} R_{5}=\frac{8}{9} \mathrm{~V} \\
i_{6} & =i_{c}+I_{8}=\frac{38}{45} \mathrm{~A} \\
v_{6} & =i_{6} R_{6}=\frac{76}{15} \mathrm{~V} \\
i_{7} & =-i_{a}=\frac{43}{45} \mathrm{~A} \\
v_{7} & =V_{7}=5 \mathrm{~V} \\
i_{8} & =I_{8}=3 \mathrm{~A} \\
v_{8} & =-v_{5}-v_{6}=-\frac{268}{45} \mathrm{~V}
\end{aligned}
$$

Problem S6 (Signals and Systems) SOLUTION

Find the Thevinin and Norton equivalent circuits for the circuits below. Hint: Add a test current to the terminals, and then determine the voltage at the terminals as a function of the test current. You should find that the terminal voltage can be expressed as

$$
v=V_{T}+R_{T} I_{\mathrm{test}}
$$

1.

where

$$
R_{1}=2 \Omega, \quad R_{2}=4 \Omega, \quad R_{3}=3 \Omega, \quad V_{4}=12 V
$$

SOLUTION: The circuit is a voltage divider, so the open-circuit voltage is

$$
V_{O C}=V_{T}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} V_{4}=\frac{8}{3} \mathrm{~V}
$$

The Thevinin resistance can be found by looking at the equivalent resistance at the terminals, setting all the sources to zero. Since a voltage source of strength zero is a short circuit, we have that

$$
R_{T}=R_{1}\left\|\left(R_{2}+R_{3}\right)=2 \Omega\right\| 7 \Omega=\frac{2 \cdot 7}{2+7} \Omega=\frac{14}{9} \Omega
$$

2.

where

$$
R_{1}=1 \Omega, \quad R_{2}=3 \Omega, \quad R_{3}=3 \Omega, \quad R_{4}=1 \Omega, \quad I_{5}=8 \mathrm{~A}
$$

SOLUTION: There are several ways to proceed. The most direct is to add a test current, and use the node method to solve. Use the following analysis circuit:

Applying KCL at each node yields the node equations:-G_2

$$
\begin{array}{rlr}
\left(G_{1}+G_{2}\right) e_{1}-G_{1} e_{2} & -G_{2} e_{3} & =I_{T E S T} \\
-G_{1} e_{1}+\left(G_{1}+G_{3}\right) e_{2} & =I_{5} \\
-G_{2} e_{1}+\left(G_{2}+G_{4}\right) e_{3} & =-I_{5}
\end{array}
$$

Plugging in values,

$$
\begin{aligned}
\frac{4}{3} e_{1}-e_{2}-\frac{1}{3} e_{3} & =I_{\text {TEST }} \\
-e_{1}+\frac{4}{3} e_{2} & =8 \\
-\frac{1}{3} e_{1}+\frac{4}{3} e_{3} & =-8
\end{aligned}
$$

Solving by row reduction or Matlab yields

$$
e_{1}=2 I_{T E S T}+8
$$

Therefore,

$$
\begin{aligned}
V_{T} & =8 \mathrm{~V} \\
R_{T} & =2 \Omega
\end{aligned}
$$

