T13 SOLUTIONS
a) THIS IS A STEADY REERRNCE FRAME (AIR MOVINE BY AT A CONSTANT SPEED OF $10 \mathrm{~m} / \mathrm{s}$ WITH A TEMPERATURE OF 260 K) THE TEMPERATURE MEASURED BY THE THERMOMETER IS higher than 260K since the flow stagnates on the surface OF THE THERMOMETER CVIA A QP, AOIABATK PROCESS S 5 W TIA NO EXTERNAL WORK) AND THE KINETIC ENERGY IS CONVERTS TO ENTHALPY.

$$
\begin{aligned}
& C_{P} T_{T}=C_{P} T+\frac{C^{2}}{2} \quad 1003.5\left(T_{T}\right)=1003.5(260)+\frac{10^{2}}{2} \\
& T_{T}=260.05 \mathrm{~K}
\end{aligned}
$$

b) SINCE THE BALLOON IS MOUINO WITH THE WIND, THERE IS NO RELATIVE VELOCITY DEFERENCE BETWEeN THE AIR MASS AND THE FRAME OF REFERENCE OF THE BAUCON. THEREFORE, TILE TEMPERATURE READ BY THE THERMOMETER IS THE SAME AS THE (STATIC) TEMPERATURE OF THE ATMOSPHERE

$$
=260 \mathrm{~K}
$$

c) FIRST You must put youssif in a steady reference frdule (SLATED ON THE AIRPAHE NEXT TO ThE THERMOMEIER)
YOU SER THE Flow MOUND TOWARAS You AT $300 \mathrm{~m} / \mathrm{s}$ \# WitH A TEMPERATURE OF 260 K . THE TEMPERATURE READ BY THE THETMOUEER IS H H Her THAN $2 G O \mathrm{~K}$ SINCE THE FLOW STACNATES (UA AQS. ADIAB. Process w/ NO EXTERNL NCRE) AND THE KNETLC ENERGY IS COVERED TO ENTHALPY.

$$
\begin{gathered}
C_{P} T_{T} \neq C_{P} T+\frac{C^{2}}{2} \quad 1003.5\left(T_{T}\right)=1003.5(260)+\frac{300^{2}}{2} \\
T_{T}=304.8 \mathrm{~K}
\end{gathered}
$$

d) AgAin, put yourself in A sian referent fraud (SEATED ON THE FAN BLADE NEXT TO THE THERMOMEtER) You See A flow MOUINE TOWAROS You AT $C=\sqrt{300^{2}+250^{2}}=$ $=390.5 \mathrm{~m} / \mathrm{s}$ AND $T=260 \mathrm{~K}$

$$
\begin{aligned}
& C_{P} T_{T}=C_{P} T+\frac{C 2}{2} \\
& T_{T}=336 K
\end{aligned} \quad 1003.5\left(T_{T}-T\right)=\frac{390.5^{2}}{2}
$$

T14 SOLUTIONS
3 EQNS ARE NLEDED: $\underbrace{\begin{array}{c}\text { adiab +noext. } \\ \text { Work }\end{array}}_{\begin{array}{c}q-5 \text { adiab }\end{array} \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{T}}} \underbrace{\frac{P_{T}}{P}}_{\begin{array}{c}\text { adiab } \\ +\begin{array}{c}\text { noext wat } \\ q-5\end{array} \\ \frac{T_{T}}{T}\end{array}=1+\frac{\gamma-1}{2} M^{2}}=\left[1+\frac{\gamma-1}{2} M^{2}\right]^{\gamma / r-1}]$
a)

$$
\begin{aligned}
& \frac{T_{T}}{T}=1+0.2(0.85)^{2}=1.1445 \quad T_{T}=248 \mathrm{~K}, T=T_{a t m}=2.7 \\
& \frac{P_{T}}{P}=1.604 \quad P_{T}=36.2 \mathrm{kPa} \quad P=P \text { atm }=22.6 \mathrm{kP}
\end{aligned}
$$

b) $T_{T}: P_{T}$ ARE SAME AS ABOVE (INLET IS ADABATIC \& G-S SO STAGNATION QUANTITIES ARE CONSTANT : WE HANEN'T CHAN(EI) ceference formes.)

$$
\begin{aligned}
& T=\frac{T_{T}}{1+\frac{r-1}{2} M^{2}}, M=0.5 \quad T_{T}=248 \mathrm{~K} \quad T=236.2 \mathrm{~K} \\
& P=\frac{P_{T}}{\left[1+\frac{r-1}{2} M^{2}\right]^{5 / \gamma-1}}, M=05 \quad P_{T}=36.2 \mathrm{kPG} \quad P=30.5 \mathrm{kPa}
\end{aligned}
$$

c)

$$
\begin{aligned}
& P_{T}=35(36.2 \mathrm{kPa})=1267 \mathrm{kPA} \\
& P=\frac{P_{T}}{\left[1+\frac{\gamma-1}{2} M^{2}\right]^{\sigma / r-1}}, M=0.05 \\
& P_{T}=1267 \mathrm{kPa}, P=1265 \mathrm{kPa} \\
& \frac{T_{T_{\text {exit }}}}{T_{T_{\text {mur }}}}=(35)^{0.4 / 1+4}=2.76 \quad T_{T_{\text {cit }}}=2.76(248 \mathrm{~K})=685 \mathrm{~K} \\
& T_{\text {eat }}=\frac{T_{T_{\text {exit }}}}{1+\frac{\gamma-1}{2} M^{2}}, M=0.5 \quad T_{T}=685 \mathrm{~K}, T=685 \mathrm{~K}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{T_{T}}{T}=1+\frac{r^{2}-1}{2} M^{2}, M=3, \text { Tatm= }=217 \mathrm{~K} \quad T_{T}=607.6 \mathrm{~K}, T=\text { Tatm= } 217 \mathrm{~K} \\
& \frac{P_{T}}{P}=\left[1+\frac{r-1}{2} M^{2}\right]^{r / r-1}, M=3, P_{\text {atra }}=7.5 \mathrm{kPa} \quad P_{r}=275.5 \mathrm{kPa}, P^{5} 7.5 \mathrm{kk}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { IF } T_{T_{\text {wiLKT }}}=607.6 \mathrm{~K}, T_{\text {toxit }}=685 \mathrm{~K} \quad \text { THEN } \frac{T_{\text {rexit }}}{T_{\text {Twat }}}=1.13 \\
& \frac{P_{\text {Taxit }}}{P_{\text {TiNLET }}}=(1.13)^{v / r-1}=1.52
\end{aligned}
$$

THIS SHOWS THAT AS M ${ }^{k} p$ THE RAM PRESSURIZATION (DUE TO RAMMING AIR W THE INLET) CAN BE QUITE SIGNIFICANT. INDEED, FOR FIGHT AT VERY HIGH SPEEDS ($>M=3$) COMPRESSORS AREN'T REQUIRED. THEENENES ARE CALLED RAMJETS. NOTE THAT THEY STILL NEED SOMETHING TO GET THEM FROM $M=O$ TO ME 3. IN SOME CASES A ROCKET IS USED (CRUISE MISSILES FOR EXAMPLE), IN OTHER CASES THE ENGINE IS CAPABLE OF BEING RE-CONFIGURED (BYPASSING FLOW AROUND THE COMPRESSOR) IN PLIGHT.

Tis Solutions (WATTZ)

1. Constan Pressure Hyat Exatneer, $40 \mathrm{~kg} / \mathrm{s}$ $P=5 M P_{a}, T N=20^{\circ} \mathrm{C}, T$ TOUT $=1000^{\circ} \mathrm{C}$
a)

intital conomons:

$$
\begin{aligned}
& P_{i}=5 \mu P a \\
& \left.T_{i}=20^{\circ} \mathrm{C}\right\} h_{i}=88.64 \frac{\mathrm{~kJ}}{\mathrm{~kg}} .
\end{aligned}
$$

(from compressed lig. talles)
Final conditions:
b)

SFEE: $\dot{W}\left[h_{2}-h_{]}\right]=\dot{Q}-\dot{y}_{S}^{\pi}$

$$
\begin{aligned}
Q & =40\left[4625.7 \times 10^{3}-88.64 \times 10^{3}\right] \\
& =181 \mathrm{MW}
\end{aligned}
$$

2. CYunder - constant Pressure henting

$$
\begin{aligned}
& V_{1}=0.1 \mathrm{~m}^{3}, m=5 \mathrm{Fg}^{2}, \quad P=0.4 \mathrm{MPa} \\
& \frac{V_{1}}{m}=V_{1}=0.02 \frac{\mathrm{~m}^{3}}{k_{g}} \quad \text { THEN EROM SEAM TAGES } \\
& V_{5}=0.001084 \quad V_{g}=0.4614 \\
& \bar{V}_{1}=V_{g}+X_{1}\left(V_{g}\right) \quad \therefore \quad X_{1}=0.041
\end{aligned}
$$

a)

STATE (2) IS SUPERUEATE VACOR, $\quad h_{2}=3066.75 \mathrm{~kJ}_{\mathrm{Fg}}$
b)

$$
\begin{aligned}
& h_{1}=h_{f}+h_{1} h_{g}=604.74+0.041 \times 2133.8=692 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& Q=m\left[h_{2}-h_{1}\right]=5\left[3066.75 \times 10^{3}-692 \times 10^{3}\right]=11.9 \mathrm{MJJ}
\end{aligned}
$$

3. Steam Turbine

$$
\begin{aligned}
& M_{i}=1.5 \mathrm{~kg} / \mathrm{s} \\
& P_{i}=2 \mathrm{MPa} \\
& T_{i}=350^{\circ} \mathrm{C} \\
& C_{i}=50 \mathrm{mf} \\
& z_{i}=6 \mathrm{~m} \\
& \dot{m} e=1.5 \mathrm{~kg} / \mathrm{s} \\
& =8.5 \mathrm{~kW} \\
& P_{e}=0.1 \mathrm{MPa} \\
& x_{e}=100 \% \\
& C_{Q}=100 \mathrm{~m} / \mathrm{s} \\
& z e=3 \mathrm{~m} \\
& \dot{m}\left[h_{e}+\frac{c_{e}^{2}}{z}+g z_{e}\right]-\dot{m}\left[h_{i}+\frac{c_{i}^{2}}{2}+g z_{i}\right]=\dot{Q}_{c r}-W_{s}
\end{aligned}
$$

From steam tables $h_{e}-2675.5 \mathrm{~kJ} / \mathrm{kg}, h_{i}=3137.0 \mathrm{~kJ} / \mathrm{kg}$

$$
W_{s}=678.2 \mathrm{~kW}
$$

Problem S7 (Signals and Systems) SOLUTION

1. Redraw the circuit with the Thevinin model for the battery:

Since this is a single loop circuit, the current i_{L} flows through each element, inobvious direction. Applying KVL to the loop yields

$$
R_{i} i_{L}+v_{L}-V=0
$$

Therefore,

$$
v_{L}=V-R_{i} i_{L}
$$

2. The power dissipated across the load is

$$
\begin{aligned}
P_{L} & =i_{L} v_{L} \\
& =i_{L}\left(V-R_{i} i_{L}\right) \\
& =i_{L} V-R_{i} i_{L}^{2}
\end{aligned}
$$

3. To maximize the power across the load, treat above expression as function of i_{L}, take first derivative with respect to i_{L}, and set to zero:

$$
\begin{aligned}
0 & =\frac{d P_{L}}{d i_{L}} \\
& =V-2 R_{i} i_{L}
\end{aligned}
$$

Solving for i_{L}, we have that

$$
i_{L}=\frac{V}{2 R_{i}}
$$

The corresponding voltage is

$$
\begin{aligned}
v_{L} & =V-R_{i} i_{L} \\
& =\frac{V}{2}
\end{aligned}
$$

4. For a battery voltage $V=12$ volts, and internal resistance $R_{i}=0.01 \Omega$,

$$
P_{L}=i_{L} v_{L}=\frac{V}{2 R_{i}} \frac{V}{2}=\frac{V^{2}}{4 R_{i}}=3600 \mathrm{~W}=4.83 \mathrm{HP}
$$

This seems reasonable to me at least. A 4 or 5 HP engine (like a lawn mower engine) would certainly be powerful enough to turn over a car engine.
5. If $v_{L}=V / 2$, and $i_{L}=V / 2 R_{i}$, then the load resistance is

$$
R_{L}=\frac{v_{L}}{i_{L}}=R_{i}
$$

That is, to maximize power, the load impedance should be the same as the output impedance of the driving circuit. This is the impedance matching condition.

Problem S8 (Signals and Systems) SOLUTION

1. Using the constitutive law for capacitors and inductors, derive the equivalent capacitance and inductance for the following series and parallel configurations:
(a)

For each capacitor, the current is $i=C d v / d t$. Therefore, the total current is

$$
i=i_{1}+i_{2}=C_{1} \frac{d v}{d t}+C_{2} \frac{d v}{d t}=\left(C_{1}+C_{2}\right) \frac{d v}{d t}
$$

Therefore, the equivalent capacitance is $C=C_{1}+C_{2}$.
(b)

For each capacitor, $i / C=d v / d t$. Therefore,

$$
\frac{d v}{d t}=\frac{d v_{1}}{d t}+\frac{d v_{2}}{d t}=\frac{i}{C_{1}}+\frac{i}{C_{2}}
$$

So

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

or

$$
C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

(c)

For each inductor, $v=L d i / d t$. In the series connection, the current through the two inductors is the same. Therefore,

$$
v=v_{1}+v_{2}=L_{1} \frac{d i}{d t}+L_{2} \frac{d i}{d t}=\left(L_{1}+L_{2}\right) \frac{d i}{d t}
$$

Therefore,

$$
L=L_{1}+L_{2}
$$

(d)

For each inductor, $d i / d t=v / L$. Therefore,

$$
\frac{d i}{d t}=\frac{d}{d t}\left(i_{1}+i_{2}\right)=\frac{v}{L_{1}}+\frac{v}{L_{2}}
$$

Therefore,

$$
\frac{1}{L}=\frac{1}{L_{1}}+\frac{1}{L_{2}}
$$

or

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

2. Find a set of differential equations that describe the dynamics of the circuit below, using the node method. Label the nodes as shown:

We can wrtie the node equations "by inspection":

$$
\begin{array}{rr}
C_{2} \frac{d e_{1}}{d t}+G_{1} e_{1} & -C_{2} \frac{d e_{2}}{d t} \\
-C_{2} \frac{d e_{1}}{d t}+C_{2} \frac{d e_{2}}{d t}+C_{3} \frac{d e_{2}}{d t}+G_{4} e_{2} & -G_{4} e_{3}
\end{array}=0
$$

Using the component values

$$
R_{1}=1 \Omega, \quad C_{2}=0.2 \mathrm{~F}, \quad C_{3}=0.2 \mathrm{~F}, \quad R_{4}=4 \Omega, \quad C_{5}=0.5 \mathrm{~F}
$$

we have that

$$
\begin{array}{rlr}
0.2 \frac{d e_{1}}{d t}+e_{1} & -0.2 \frac{d e_{2}}{d t} & =0 \\
-0.2 \frac{d e_{1}}{d t}+0.4 \frac{d e_{2}}{d t}+0.25 e_{2} & -0.25 e_{3} & =0 \\
-0.25 e_{2} & +0.5 \frac{d e_{3}}{d t}+0.25 e_{3} & =0
\end{array}
$$

