Unified Fall 2006 T17 solutions by Christ Edwards
Given:

$$
\begin{aligned}
& p_{1}=6 \mathrm{MPa} \\
& p_{3}=15 \mathrm{MPa} \\
& \left.x_{3}=1 \text { (Saturated Star }\right) \\
& x_{1}=0 \text { (Saturated Liquid) }
\end{aligned}
$$

Find: * Pu diagram

* Plant operating conditions

Solution:
a)

b.) $\left.\frac{m_{f}}{m_{g}+m_{f}} \right\rvert\,<20 \%, \quad x \equiv \frac{m_{g}}{m_{f}+m_{g}}$,

$$
\therefore x_{4} \geq 80 \%
$$

Quality of 4 must be greater than 0.8 .
c.) Find MASS FLOW

SFEE Across turbine:

$$
\dot{w}_{T}=500 \mathrm{MW}=\dot{m}_{H_{2} \mathrm{O}}\left(h_{3}-h_{4}\right) \Rightarrow \dot{m}_{H_{2} \mathrm{O}}=\frac{\dot{w}_{T}}{h_{3}-h_{4}}
$$

At 3: $\left.h_{3}=\left.h \mathrm{~g}\right|_{15 \mathrm{mpa}}=2610.5 \mathrm{~kJ} / \mathrm{kg}\right\}$ From
At 4: $\left.\quad h_{f}\right|_{6 M P_{a}}=1213.32 \mathrm{~kJ} / \mathrm{kg}$

$$
\left.\mathrm{hg}\right|_{6 \text { ma }}=2784.3 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
h_{4} & =h_{f 16 \mathrm{MPa}}\left(1-x_{4}\right)+\mathrm{hg}_{\mathrm{I}_{\mathrm{mpa}}} x_{4} \\
& =2470.104 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\dot{m}_{H_{2} \mathrm{O}}=\frac{500 \times 10^{3} \mathrm{kw}}{\left(2610.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}-2470.104 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)}=\frac{3,561 \frac{\mathrm{~kg}}{\mathrm{~s}}=\dot{m}_{H_{2 O}}}{\approx 10 \times \text { Aircraft }}
$$

Note: Makes no distinction between vapor or liquid: It's total mass flow.
d.) Find Main Pump Power

SFEE Across. Pump:

$$
\begin{aligned}
& \dot{w}_{p}=\dot{m}_{H_{2} O}\left(h_{2}-h_{1}\right) \\
& h_{1}=h_{f} l_{G M P_{1}}=1213.32 \mathrm{~kJ} / \mathrm{kg} \text { (From saturated) }
\end{aligned}
$$

Need ho

$$
\begin{gathered}
\text { Given } T_{2}=280^{\circ} \mathrm{C} \\
\left.h_{2}=1232.09 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \begin{array}{l}
\text { From compressed liquid water) } \\
\text { table at } 15 \mathrm{MPa}
\end{array}\right) \\
\Rightarrow \dot{\omega}_{p}=\left(3561 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(1232.09-1213.32 \frac{\mathrm{~kJ}}{\mathrm{gg}}\right) \\
\dot{\omega}_{p}=66.840 \mathrm{MW}
\end{gathered}
$$

e.) Reactor Heat Input

$$
\begin{aligned}
\dot{Q}_{I N} & =\dot{m}_{H_{2} \mathrm{O}}\left(h_{3}-h_{2}\right) \quad \text { by SFEE } \\
& =\left(3,561 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(2610.5-1232.09 \frac{\mathrm{~kJ}}{\mathrm{gg}}\right) \\
\dot{Q}_{I N} & =4,908.5 \mathrm{MW}
\end{aligned}
$$

A bit large, typically $\dot{Q}_{I N} \approx 3000 \mathrm{MW}$
f.) Thermal Efficiency

$$
\begin{aligned}
& \eta_{t h}=\frac{\text { What we get }}{\text { What we pay for }}=\frac{\dot{\omega}_{T}-\dot{w}_{f}}{\dot{Q}_{I_{N}}}=\frac{500 \mathrm{Mw}-66.84 \mu \mathrm{~m}}{4,908.5 \mathrm{MW}} \\
& \eta_{\text {th }}=8.82 \%
\end{aligned}
$$

Quite low. Other plants might have $\eta_{\text {th }} \geq 35 \%$

Improvements: Super heat

$$
\left.\begin{array}{c}
\eta_{+k} \uparrow \\
w_{\text {NET }} \uparrow
\end{array}\right\} \begin{aligned}
& \text { with } \\
& \text { Super heating }
\end{aligned}
$$

g.) Superheated Vapor Table for 15 MPa :

Given $T_{3^{\prime}}=400^{\circ} \mathrm{C}$

$$
h_{3^{\prime}}=2975.44
$$

Net Cycle Work: $\dot{\omega}_{\text {NET }}=\dot{\omega}_{T}-\dot{\omega}_{p}$ (Need to recalculate)

$$
\dot{\omega}_{T}=\dot{m}_{H_{2} O}\left(h_{3},-h_{4}\right)
$$

Now $x_{4}=1$, so state 4 at vapor saturation.
In Saturated Water Tables, when $p=6 \mu \mathrm{pa}$

$$
\begin{aligned}
& h_{4}=\left.h_{g}\right|_{6 M P G}=2784.33 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \dot{w}_{T}=\left(3.561 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(2975.44-2784.33 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \\
&= 68.054 \text { MW } \\
& \dot{w}_{\text {MET }}=\dot{w}_{T}-\dot{w}_{p} k \text { From previous parts of problem } \\
&=68.054-66.840 \mathrm{MW} \\
& \dot{w}_{\text {NET }}=1,214 \mathrm{MW}
\end{aligned}
$$

h.)

$$
\begin{aligned}
\eta_{t h} & =\frac{\dot{W}_{\text {NET }}}{\dot{Q}_{I N}} \\
\dot{Q}_{I_{N}} & =\dot{m}\left(h_{3},-h_{2}\right)=\left(3,561 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(2975.44-1232.09 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \\
& =6,208 \mathrm{MW} \\
\Rightarrow \eta_{+h} & =19.6 \% \text { Much improved. }
\end{aligned}
$$

Problem 1

GIVEN:

ASSUMPTIONS: • Neglect potential and kinetic energy effects.
CONCEPTS: • Conservation of mass.

- First Law in Control Volume form.
- Two-phase media.

SOLUTION:

a) Applying mass conservation:

$$
\frac{d m_{C V}}{d t}=\dot{m}_{\mathrm{in}}
$$

Integrating in time:

$$
m_{C V, 2}-m_{C V, 1}=\Delta m_{\mathrm{in}}
$$

The tank is empty at the beginning, $m_{C V, 1}=0$:

$$
m_{C V, 2}=\Delta m_{\mathrm{in}}
$$

Applying First Law in Control Volume:

$$
\frac{d U_{C V}}{d t}=\dot{m}_{\mathrm{in}} h_{\mathrm{in}}
$$

Integrating in time:

$$
U_{C V, 2}-U_{C V, 1}=\Delta m_{\mathrm{in}} h_{\mathrm{in}}
$$

Since the tank is empty at the beginning, $U_{C V, 1}=0$:

$$
U_{C V, 2}=\Delta m_{\mathrm{in}} h_{\mathrm{in}}
$$

From mass conservation, $m_{C V, 2}=\Delta m_{\text {in }}$:

$$
U_{C V, 2}=m_{C V, 2} h_{\text {in }} \Rightarrow u_{2}=h_{\mathrm{in}}
$$

Then, the final specific internal energy is known:

$$
u_{2}=h_{\mathrm{in}}=h\left(p=10 \mathrm{bar}, T=300^{\circ} \mathrm{C}\right)=3051.2 \mathrm{~kJ} / \mathrm{kg}
$$

The final pressure is also known, $p_{2}=10$ bar. Then, T_{2} can be obtained by interpolation:

$$
\left.\begin{array}{l}
p=1 \mathrm{MPa}, T=400^{\circ} \mathrm{C}, u=2957.3 \mathrm{~kJ} / \mathrm{kg} \\
p=1 \mathrm{MPa}, T=500^{\circ} \mathrm{C}, u=3124.4 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right\} T_{2}=456.2^{\circ} \mathrm{C}
$$

b) The p-v diagram is:

The T-s diagram is:

c) The process $2-3$ is a constant volume heat rejection. The specific volume at point 3 is:

$$
v_{3}=v_{2}=0.3333 \mathrm{~m}^{3} / \mathrm{kg}
$$

This specific volume is between the specific volumes of the saturated vapor and the saturated liquid at $40^{\circ} \mathrm{C}$:

$$
\begin{gathered}
v_{f}\left(T=40^{\circ} \mathrm{C}\right)=0.001008 \mathrm{~m}^{3} / \mathrm{kg} \\
v_{g}\left(T=40^{\circ} \mathrm{C}\right)=19.52 \mathrm{~m}^{3} / \mathrm{kg}
\end{gathered}
$$

Then, the final state is under the vapor dome. The final pressure is the saturation pressure:

$$
p_{3}=p_{\text {sat }}\left(T=40^{\circ} \mathrm{C}\right)=7.384 \mathrm{kPa}
$$

d) The rejected heat can be obtained using First Law:

$$
U_{3}-U_{2}=Q
$$

The final specific internal energy is:

$$
u_{3}=\left(1-x_{3}\right) u_{f}\left(T=40^{\circ} \mathrm{C}\right)+x_{3} u_{g}\left(T=40^{\circ} \mathrm{C}\right)
$$

x_{3} is calculated from:

$$
x_{3}=\frac{v_{3}-v_{f}\left(T=40^{\circ} \mathrm{C}\right)}{v_{g}\left(T=40^{\circ} \mathrm{C}\right)-v_{f}\left(T=40^{\circ} \mathrm{C}\right)}=0.01702
$$

Then:

$$
u_{3}=\left(1-x_{3}\right) u_{f}\left(T=40^{\circ} \mathrm{C}\right)+x_{3} u_{g}\left(T=40^{\circ} \mathrm{C}\right)=206.1 \mathrm{~kJ} / \mathrm{kg}
$$

where $u_{f}\left(T=40^{\circ} \mathrm{C}\right)=167.56 \mathrm{~kJ} / \mathrm{kg}$ and $u_{g}\left(T=40^{\circ} \mathrm{C}\right)=2430.1 \mathrm{~kJ} / \mathrm{kg}$.
The internal energy at point 2 is:

$$
u_{2}=h_{\mathrm{in}}=3051.2 \mathrm{~kJ} / \mathrm{kg}
$$

Finally, the mass in the tank is:

$$
m_{\text {vessel }}=\frac{V}{v_{3}}=9 \times 10^{-3} \mathrm{~kg}
$$

Then:

$$
Q=m_{\mathrm{vessel}}\left(u_{3}-u_{2}\right)=-25.61 \mathrm{~kJ}
$$

This heat has negative sign because is rejected heat.

Problem 5

GIVEN:

ASSUMPTIONS: • Steady flow.

- Neglect kinetic and potential energy effects.

CONCEPTS: • Stoichiometry.

- First Law in CV form.
- Enthalpy of formation.

SOLUTION:

The stoichiometric reaction is:

$$
\mathrm{C}_{8} \mathrm{H}_{18}+12.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+12.5 \times 3.76 \mathrm{~N}_{2}
$$

Using First Law in Control Volume form:

$$
0=-\dot{Q}_{R}-\dot{W}+\sum_{R} \dot{n}_{R} \bar{h}_{R}-\sum_{P} \dot{n}_{P} \bar{h}_{P}
$$

The reactants enthalpy flow is given by:

$$
\sum_{R} \dot{n}_{R} \bar{h}_{R}=\dot{n}_{f}\left(\bar{h}_{\mathrm{C}_{8} \mathrm{H}_{18}}+12.5 \bar{h}_{\mathrm{O}_{2}}+47 \bar{h}_{\mathrm{N}_{2}}\right)=\dot{n}_{f} \bar{h}_{f, \mathrm{C}_{8} \mathrm{H}_{18}(l)}^{0}=-5.002 \mathrm{~kW}
$$

The products enthalpy flow is given by:

$$
\sum_{P} \dot{n}_{P} \bar{h}_{P}=\dot{n}_{f}\left(8 \bar{h}_{\mathrm{CO}_{2}}+9 \bar{h}_{\mathrm{H}_{2} \mathrm{O}}+47 \bar{h}_{\mathrm{N}_{2}}\right)=-80.929 \mathrm{~kW}
$$

where

$$
\bar{h}_{\mathrm{CO}_{2}}=\bar{h}_{f, \mathrm{CO}_{2}}^{0}+\left.\Delta \bar{h}_{\mathrm{CO}_{2}}\right|_{T=900 \mathrm{~K}}=-393522 \mathrm{~kJ} / \mathrm{kmol}+28030 \mathrm{~kJ} / \mathrm{kmol}=-365492 \mathrm{~kJ} / \mathrm{kmol}
$$

$$
\begin{gathered}
\bar{h}_{\mathrm{H}_{2} \mathrm{O}}=\bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{0}+\left.\Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}}\right|_{T=900 \mathrm{~K}}=-241826 \mathrm{~kJ} / \mathrm{kmol}+21937 \mathrm{~kJ} / \mathrm{kmol}=-219889 \mathrm{~kJ} / \mathrm{kmol} \\
\bar{h}_{\mathrm{N}_{2}}=\bar{h}_{f, \mathrm{~N}_{2}}^{0}+\left.\Delta \bar{h}_{\mathrm{N}_{2}}\right|_{T=900 \mathrm{~K}}=0 \mathrm{~kJ} / \mathrm{kmol}+18223 \mathrm{~kJ} / \mathrm{kmol}=18223 \mathrm{~kJ} / \mathrm{kmol}
\end{gathered}
$$

Finally:

$$
\dot{Q}_{R}=-\dot{W}+\sum_{R} \dot{n}_{R} \bar{h}_{R}-\sum_{P} \dot{n}_{P} \bar{h}_{P}=45.93 \mathrm{~kW}
$$

Problem S9 (Signals and Systems) SOLUTION

Write down the node equations, using impedances:

$$
\begin{array}{rlr}
\left(C_{1} s+C_{2} s+G_{5}\right) E_{1} & -C_{2} s E_{2} & -G_{5} E_{3}
\end{array}=0
$$

Using the component values

$$
C_{1}=1 \mathrm{~F}, \quad C_{2}=2 \mathrm{~F}, \quad R_{3}=2 \Omega, \quad R_{4}=1 \Omega, \quad R_{5}=1 \Omega
$$

we have that

$$
\left[\begin{array}{ccc}
3 s+1 & -2 s & -1 \\
-2 s & 2 s+1 & -1 \\
-1 & -1 & 2.5
\end{array}\right]\left[\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=M(s) \underline{E}
$$

In order to have a non-trivial solution, must have that

$$
\operatorname{det}[M(s)]=5 s^{2}+3.5 s+0.5
$$

The roots are

$$
s_{1}=-\frac{1}{2}, \quad s_{2}=-\frac{1}{5}
$$

Solve for the characteristics vectors. Define

$$
M_{1}=M\left(s_{1}\right)=\left[\begin{array}{ccc}
-0.5 & 1 & -1 \\
1 & 0 & -1 \\
-1 & -1 & 2.5
\end{array}\right]
$$

Row reduction yields

$$
M_{1}^{\prime}=\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 1 & -1.5 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, a characteristic vector is

$$
\underline{E}_{1}=\left[\begin{array}{c}
1 \\
1.5 \\
1
\end{array}\right]
$$

Similarly, define

$$
M_{2}=M\left(s_{2}\right)=\left[\begin{array}{lll}
0.4 & 0.4 & -1 \\
0.4 & 0.6 & -1 \\
-1 & -1 & 2.5
\end{array}\right]
$$

Row reduction yields

$$
M_{1}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & -2.5 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, a characteristic vector is

$$
\underline{E}_{2}=\left[\begin{array}{c}
2.5 \\
0 \\
1
\end{array}\right]
$$

The general solution is

$$
\underline{e}(t)=a\left[\begin{array}{c}
1 \\
1.5 \\
1
\end{array}\right] e^{-0.5 t}+b\left[\begin{array}{c}
2.5 \\
0 \\
1
\end{array}\right] e^{-0.2 t}
$$

The initial conditions are that

$$
\begin{aligned}
& e_{1}(0)=3 \mathrm{~V}=a+2.5 b \\
& e_{2}(0)=6 \mathrm{~V}=1.5 a
\end{aligned}
$$

Solving for a and b,

$$
\begin{aligned}
a & =4 \\
b & =-0.4
\end{aligned}
$$

The node voltages as a function of time are therefore

$$
\begin{aligned}
& e_{1}(t)=\left(4 e^{-0.5 t}-1 e^{-0.2 t}\right) \mathrm{V} \\
& e_{2}(t)=\left(6 e^{-0.5 t}\right) \mathrm{V} \\
& e_{3}(t)=\left(4 e^{-0.5 t}-0.4 e^{-0.2 t}\right) \mathrm{V}
\end{aligned}
$$

Problem S10 (Signals and Systems) SOLUTION

Label the loop currents as above. Using impedances, we can write the loop equations (KVL) as

$$
\begin{array}{rlr}
\left(L_{2} s+R_{4}\right) I_{a} & -L_{2} s I_{b} & =0 \\
-L_{2} s I_{a}+\left(L_{2} s+R_{3}+R_{5}\right) I_{b} & -R_{3} I_{c} & =0 \\
-R_{3} I_{b}+\left(L_{1} s+R_{3}\right) I_{c} & =0
\end{array}
$$

Plug in the component values

$$
L_{1}=1 \mathrm{H}, \quad L_{2}=1 \mathrm{H}, \quad R_{3}=1 \Omega, \quad R_{4}=1 \Omega, \quad R_{5}=0.5 \Omega
$$

Then

$$
\left[\begin{array}{ccc}
s+1 & -s & 0 \\
-s & s+1.5 & -1 \\
0 & -1 & s+1
\end{array}\right]\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=M(s) \underline{I}=\underline{0}
$$

Non-trivial solutions exist when

$$
\operatorname{det}[M(s)]=0=2.5 s^{2}+3 s+0.5
$$

Therefore, the characteristic values are

$$
\begin{aligned}
& s_{1}=-1 \\
& s_{2}=-0.2
\end{aligned}
$$

Next, solve for the charactersitic values. Define

$$
M_{1}=M\left(s_{1}\right)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0.5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Row reduce to obtain

$$
M_{1}^{\prime}=\left[\begin{array}{ccc}
1 & 0.5 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, a characteristic vector is

$$
\underline{I}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Similarly, define

$$
M_{2}=M\left(s_{2}\right)=\left[\begin{array}{ccc}
0.8 & 0.2 & 0 \\
0.2 & 1.3 & -1 \\
0 & -1 & 0.8
\end{array}\right]
$$

Row reduce to obtain

$$
M_{2}^{\prime}=\left[\begin{array}{ccc}
1 & -0.25 & 0 \\
0 & 1 & -0.8 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, a characteristic vector is

$$
\underline{I}_{2}=\left[\begin{array}{c}
-0.2 \\
0.8 \\
1
\end{array}\right]
$$

So, the general solution is

$$
\underline{i}(t)=a\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] e^{-t}+b\left[\begin{array}{c}
-0.2 \\
0.8 \\
1
\end{array}\right] e^{-0.2 t}
$$

Apply the initial conditions

$$
\begin{aligned}
& i_{1}(0)=10 \mathrm{~A}=i_{c}(0)=a+b \\
& i_{2}(0)=0 \mathrm{~A}=i_{a}(0)-i_{b}(0)=a-b
\end{aligned}
$$

Solving for a and b yields

$$
a=b=5 \mathrm{~A}
$$

Therefore,

$$
\begin{aligned}
& i_{1}(t)=\left(5 e^{-t}+5 e^{-0.2 t}\right) \mathrm{A} \\
& i_{2}(t)=\left(5 e^{-t}-5 e^{-0.2 t}\right) \mathrm{A}
\end{aligned}
$$

Unified Engineering I

Problem S11 (Signals and Systems) SOLUTION

Label the node potentials as shown:

The node equations, using impedances, are

$$
\begin{array}{rlrl}
\left(C_{1} s+G_{2}\right) E_{1} & -G_{2} E_{2} & & =0 \\
-G_{2} E_{1}+\left(G_{2}+G_{3}+G_{4}\right) E_{2} & -G_{4} E_{3} & =G_{2} v_{1} \\
-G_{4} E_{2}+\left(\frac{1}{L_{5} s}+G_{4}\right) E_{3} & =0
\end{array}
$$

Plugging in the component values,

$$
C_{1}=0.25 \mathrm{~F}, \quad R_{2}=4 \Omega, \quad R_{3}=4 \Omega, \quad R_{4}=1 \Omega, \quad L_{5}=1 \mathrm{H}
$$

we have that

$$
\begin{aligned}
(0.25 s+0.25) E_{1}-0.25 E_{2} & =0 \\
-0.25 E_{1}+1.5 E_{2} & -E_{3}
\end{aligned}=0
$$

or in matrix form,

$$
\left[\begin{array}{ccc}
0.25 s+0.25 & -0.25 & 0 \\
-0.25 & 1.5 & -1 \\
0 & -1 & \frac{1}{s}+1
\end{array}\right]\left[\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=M(s) \underline{E}=\underline{0}
$$

Non-trivial solutions exist for

$$
\operatorname{det}[M(s)]=\frac{2 s^{2}+7 s+5}{16 s}=0
$$

The roots are

$$
\begin{aligned}
& s_{1}=-1 \\
& s_{2}=-2.5
\end{aligned}
$$

Next, find the characteristic vectors. Define

$$
M_{1}=M\left(s_{1}\right)=\left[\begin{array}{ccc}
0 & -0.25 & 0 \\
-0.25 & 1.5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Row reduce to obtain

$$
M_{1}^{\prime}=\left[\begin{array}{ccc}
1 & -6 & 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A characteristic vector is then

$$
\underline{E}_{1}=\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]
$$

Similarly, define

$$
M_{2}=M\left(s_{2}\right)=\left[\begin{array}{ccc}
-0.375 & -0.25 & 0 \\
-0.25 & 1.5 & -1 \\
0 & -1 & 0.6
\end{array}\right]
$$

Row reduce to obtain

$$
M_{2}^{\prime}=\left[\begin{array}{ccc}
1 & 0.666 \overline{6} & 0 \\
0 & 1.666 \overline{6} & -1 \\
0 & 0 & 0
\end{array}\right]
$$

A characteristic vector is then

$$
\underline{E}_{2}=\left[\begin{array}{c}
-0.4 \\
0.6 \\
1
\end{array}\right]
$$

The general solution is

$$
\underline{e}(t)=a\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right] e^{-t}+b\left[\begin{array}{c}
-0.4 \\
0.6 \\
1
\end{array}\right] e^{-2.5 t}
$$

The initial conditions on the capacitor and inductor are

$$
v_{1}(0)=2 \mathrm{~V}, \quad i_{5}(0)=1 \mathrm{~A}
$$

Since $v_{1}=e_{1}-0=e_{1}$, the I.C. on the capacitor yields

$$
-4 a-0.4 b=2
$$

Now, the voltage across the inductor is $v_{5}=0-e_{3}=-e_{3}=-a e^{-t}-b e^{-2.5 t}$. Since the impedance of the inductor is $L_{5} s$, we have that the current through the inductor is

$$
i_{5}(t)=\frac{-a e^{-t}}{L_{5}(-1)}+\frac{-b e^{-2.5 t}}{L_{5}(-2.5)}=a e^{-t}+0.4 b e^{-2.5 t}
$$

The I.C. on the inductor implies that

$$
a+0.4 b=1
$$

Solving for a and b, we have that

$$
\begin{aligned}
a & =-1 \mathrm{~V} \\
b & =5 \mathrm{~V}
\end{aligned}
$$

Therefore, the final solution is

$$
\begin{aligned}
v_{1}(t) & =\left(4 e^{-t}-2 e^{-2.5 t}\right) \mathrm{V} \\
i_{5}(t) & =\left(-e^{-t}+2 e^{-2.5 t}\right) \mathrm{V}
\end{aligned}
$$

Problem S12 (Signals and Systems) SOLUTION

Use the node voltages as labeled above. The node equations are

$$
\begin{aligned}
\left(G_{2}+G_{3}+G_{4}\right) e_{1}-G_{4} e_{2} & =G_{2} v_{1} \\
-G_{4} e_{1}+G_{4} e_{2} & =i_{5}
\end{aligned}
$$

Using the component values

$$
C_{1}=0.25 \mathrm{~F}, \quad R_{2}=4 \Omega, \quad R_{3}=4 \Omega, \quad R_{4}=1 \Omega, \quad L_{5}=1 \mathrm{H}
$$

we have that

$$
\begin{aligned}
1.5 e_{1}-e_{2} & =0.25 v_{1} \\
-e_{1}+e_{2} & =i_{5}
\end{aligned}
$$

Solve for e_{1}, e_{2} using Cramer's rule or row reduction to obtain

$$
\begin{aligned}
& e_{1}=0.5 v_{1}+2 i_{5} \\
& e_{2}=0.5 v_{1}+3 i_{5}
\end{aligned}
$$

The constitutive law for the capacitor is

$$
\frac{d v_{1}}{d t}=\frac{1}{C_{1}} i_{1}
$$

Use KCL at the v_{1} node to obtain i_{1} :

$$
i_{1}+G_{2}\left(v_{1}-e_{1}\right)=0
$$

Solving for i_{1}, and using component values,

$$
i_{1}=-G_{2}\left(0.5 v_{1}-2 i_{5}\right)=-0.125 v_{1}+0.5 i_{5}
$$

Then

$$
\frac{d v_{1}}{d t}=\frac{1}{C_{1}} i_{1}=-0.5 v_{1}+2 i_{5}
$$

The constitutive law for the inductor is

$$
\frac{d i_{5}}{d t}=\frac{1}{L_{5}} v_{5}
$$

Using $v_{5}=-e_{2}$, and the value of L_{5}, we have that

$$
\frac{d i_{5}}{d t}=-0.5 v_{1}-3 i_{5}
$$

Therefore, the dynamics matrix is

$$
A=\left[\begin{array}{cc}
-0.5 & 2 \\
-0.5 & -3
\end{array}\right]
$$

The eigenvalues are the roots of

$$
\operatorname{det}(s I-A)=0=s^{2}+3.5 s+2.5
$$

The eigenvalues are then $s=-1,-2.5$, just as in Problem S11.

