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Problem S13 (Signals and Systems) SOLUTION

It's easiest to use the node method for this problem. Label the states i1, and v2, and

the nodes as below:

–


+

u(t) y(t)R3C2

L1

–


+
+-

v2

i1

u+v2

The state vector is de�ned as

x =

[
i1
v2

]
So we need to �nd di1/dt, dv2/dt. Start with the inductor, with

di1
dt

=
v1

L1

=
v2

L1

since v2 = v1. For the capacitor,
dv2

dt
=

i2
C2

To �nd i2, apply KCL at the u + v2 node:

i1 + i2 +
u + v2

R3

= 0

Solving for i2,

i2 = −i1 −
u + v2

R3

Therefore,
dv2

dt
= − i1

C2

− u + v2

R3C2

In state-space form,

d

dt

[
i1
v2

]
=

[
0 1/L1

−1/C2 −1/R3C2

] [
i1
v2

]
+

[
0

−1/R3C2

]
u

y =
[

0 1
] [

i1
v2

]
+ [1]u
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Problem S14 (Signals and Systems) SOLUTION

Consider the RLC circuit of Problem S13, shown below:

–

+
u(t) y(t)R3C2

L1

–

+

1. From S13, we found a state-space description to be

d

dt

[
i1
v2

]
=

[
0 1/L1

−1/C2 −1/R3C2

] [
i1
v2

]
+

[
0

−1/R3C2

]
u

y =
[

0 1
] [

i1
v2

]
+ [1]u

Therefore,

sI − A =

[
s −1/L1

1/C2 s + 1/R3C2

]
Inverting,

(sI − A)−1 =
1

s2 + s/R3C2 + 1/L1C2

[
s + 1/R3C2 +1/L1

−1/C2 s

]
Multiplying by C,

C(sI − A)−1 =
1

s2 + s/R3C2 + 1/L1C2

[
−1/C2 s

]
Multiplying by B,

C(sI − A)−1B =
−s/R3C2

s2 + s/R3C2 + 1/L1C2

Adding D,

G(s) = C(sI−A)−1B+D =
−s/R3C2

s2 + s/R3C2 + 1/L1C2

+1 =
s2 + 1/L1C2

s2 + s/R3C2 + 1/L1C2



2. To �nd the transfer function using impedance methods, note that the inductor
and capacitor have parallel impedance

ZLC = ZL||ZC =
ZLZC

ZL + ZC

=
Ls

(
1

Cs

)
Ls + 1

Cs

=
Ls

LCs2 + 1

(Note that I have dropped the numerical subscripts, since no confusion can
arise.) Then the circuit is a voltage divider, with transfer function

G(s) =
R

ZLC + R
=

R
Ls

LCs2+1
+ R

=
R (LCs2 + 1)

R (LCs2 + 1) + Ls
=

RLCs2 + R

RLCs2 + +RLs + R

Dividing numerator and denominator by RLC gives

G(s) =
s2 + 1/L1C2

s2 + s/R3C2 + 1/L1C2

as in part (1).

3. For component values

L1 = 1 H, C2 = 0.25 F, R3 = 10 Ω

the transfer function is

G(s) =
s2 + 4

s2 + 0.4s + 4

Therefore,

G(jω) =
−ω2 + 4

−ω2 + 0.4jω + 4

You are then to plot the magnitude of this function. This could be done in a
spread sheet, by calculating the transfer function frequency by frequency, or by
using the Matlab command bode. I used Matlab. (Most of you will probably
use a spreadsheet, since we haven't used Matlab this term.) My plot is shown
below:
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Note that I've plotted the magnitude on a log-log scale. (This is how experts
always plot transfer functions.) Most of you will probably plot on a linear-
linear scale � that's OK. On either scale, it's clear why this is a �notch �lter�
� graphically, there's a notch in the plot which is otherwise a straight line.
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Problem S15 (Signals and Systems) SOLUTION

In Problem S14, we found that

G(s) =
s2 + 1/L1C2

s2 + s/R3C2 + 1/L1C2

For component values

L1 = 1 H, C2 = 0.25 F, R3 = 10 Ω

the transfer function is

G(s) =
s2 + 4

s2 + 0.4s + 4

1. For the input

u(t) = cos t

the complex frequency is s = jω, where ω = 1, and the complex amplitude is
U = 1. Therefore,

Y = G(s)U = G(1j) · 1 ≈ 0.9825− 0.1310j

The real and imaginary parts of the amplitude correspond to the cosine and
(minus) sine amplitudes. Therefore,

u(t) ≈ 0.9825 cos t + 0.1310 sin t

2. For the input
u(t) = 3 sin 2t

the complex frequency is s = jω, where ω = 2, and the complex amplitude is
U = 3. Therefore,

Y = G(s)U = G(2j) · 3 = 0

The amplitude of y is identically zero, because the frequency of the input signal
is at exactly the notch frequency. Therefore,

u(t) = 0

3. For the input
u(t) = 2 cos 4t + sin 4t

the complex frequency is s = jω, where ω = 4, and the complex amplitude is
U = 2− j. Therefore,

Y = G(s)U = G(4j) · (2− j) ≈ (0.9825 + 0.1310j)(2− j) ≈ 2.0961− 0.7205j

Finally,
u(t) ≈ 2.0961 cos 4t + 0.7205 sin 4t



16.05 Thermal Energy Solution to Problem Set #8

Problem 4
GIVEN:

ASSUMPTIONS: • Steady flow.
• Neglect kinetic and potential energy effects.

CONCEPTS: • Stoichiometry.
• First Law in CV form.
• Enthalpy of formation.

SOLUTION:

a) The stoichiometric reaction is:

C2H6 + 3.5(O2 + 3.76N2) → 2CO2 + 3H2O + 3.5× 3.76N2

With 20% excess air:

C2H6 + 4.2(O2 + 3.76N2) → 2CO2 + 3H2O + 0.7O2 + 4.2× 3.76N2

Then, the air/fuel ratio is:

1

f
=

mair

mfuel

=
4.2(MO2 + 3.76MN2)

MC2H6

= 19.22

b) Per kmol of fuel, the products will be:

• 2 kmol of CO2.

• 3 kmol of H2O.

• 0.7 kmol of O2.

• 15.79 kmol of N2.

c) The enthalpy of a reaction at the standard conditions is:

∆hreaction = 2h
0

f,CO2
+ 3h

0

f,H2O + 0.7h
0

f,O2
+ 15.79h

0

f,N2
−

−h
0

f,C2H6
− 4.2h

0

f,O2
− 15.79h

0

f,N2
=

= 2h
0

f,CO2
+ 3h

0

f,H2O − h
0

f,C2H6
= −1.428× 106 kJ/kmol

9
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d) The amount of heat transfer per kmol of fuel is obtained from the first law:

q =
∑

R

nRhR −
∑

P

nP hP

The enthalpy of the reactants is:
∑

R

nRhR = hC2H6 + 4.2hO2 + 15.79hN2 = h
0

f,C2H6
+ 4.2h

0

f,O2
+ 15.79h

0

f,N2
= h

0

f,C2H6

The enthalpy of the products is:
∑

P

nP hP = 2hCO2 + 3hH2O + 0.7hO2 + 15.79hN2 ,

where
hCO2 = h

0

f,CO2
+ ∆hCO2|T=600 K

hH2O = h
0

f,H2O + ∆hH2O|T=600 K

hO2 = h
0

f,O2
+ ∆hO2|T=600 K = ∆hO2|T=600 K

hN2 = h
0

f,N2
+ ∆hN2|T=600 K = ∆hN2|T=600 K

Then:
∑

P

nP hP = (2h
0

f,CO2
+ 3h

0

f,H2O) + (2∆hCO2 + 3∆h
0

H2O + 0.7∆hO2 + 15.79∆hN2)|T=600 K

∆hCO2 , ∆hH2O, ∆hO2 and ∆hN2 are the enthalpy change between the reference state and
the substance at the exit conditions (Tout = 600 K, pout = 1 bar). These ∆h can be found in
tables:

∆hCO2 = 12906 kJ/kmol

∆hH2O = 10499 kJ/kmol

∆hO2 = 9245 kJ/kmol

∆hN2 = 8894 kJ/kmol

Adding the different enthalpy of the different products and reactants, and using the definition
of ∆hreaction:

q = −∆hreaction − 2∆hCO2 − 3∆h
0

H2O − 0.7∆hO2 − 15.79∆hN2 = 1.224× 106 kJ/kmol

10
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