Problem S13 (Signals and Systems) SOLUTION

It's easiest to use the node method for this problem. Label the states i_{1}, and v_{2}, and the nodes as below:

The state vector is defined as

$$
\underline{x}=\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]
$$

So we need to find $d i_{1} / d t, d v_{2} / d t$. Start with the inductor, with

$$
\frac{d i_{1}}{d t}=\frac{v_{1}}{L_{1}}=\frac{v_{2}}{L_{1}}
$$

since $v_{2}=v_{1}$. For the capacitor,

$$
\frac{d v_{2}}{d t}=\frac{i_{2}}{C_{2}}
$$

To find i_{2}, apply KCL at the $u+v_{2}$ node:

$$
i_{1}+i_{2}+\frac{u+v_{2}}{R_{3}}=0
$$

Solving for i_{2},

$$
i_{2}=-i_{1}-\frac{u+v_{2}}{R_{3}}
$$

Therefore,

$$
\frac{d v_{2}}{d t}=-\frac{i_{1}}{C_{2}}-\frac{u+v_{2}}{R_{3} C_{2}}
$$

In state-space form,

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{cc}
0 & 1 / L_{1} \\
-1 / C_{2} & -1 / R_{3} C_{2}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 / R_{3} C_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]+[1] u
\end{aligned}
$$

Unified Engineering I

Fall 2006

Problem S14 (Signals and Systems) SOLUTION

Consider the RLC circuit of Problem S13, shown below:

1. From S13, we found a state-space description to be

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{cc}
0 & 1 / L_{1} \\
-1 / C_{2} & -1 / R_{3} C_{2}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 / R_{3} C_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]+[1] u
\end{aligned}
$$

Therefore,

$$
s I-A=\left[\begin{array}{cc}
s & -1 / L_{1} \\
1 / C_{2} & s+1 / R_{3} C_{2}
\end{array}\right]
$$

Inverting,

$$
(s I-A)^{-1}=\frac{1}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}\left[\begin{array}{cc}
s+1 / R_{3} C_{2} & +1 / L_{1} \\
-1 / C_{2} & s
\end{array}\right]
$$

Multiplying by C,

$$
C(s I-A)^{-1}=\frac{1}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}\left[\begin{array}{ll}
-1 / C_{2} & s
\end{array}\right]
$$

Multiplying by B,

$$
C(s I-A)^{-1} B=\frac{-s / R_{3} C_{2}}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}
$$

Adding D,

$$
G(s)=C(s I-A)^{-1} B+D=\frac{-s / R_{3} C_{2}}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}+1=\frac{s^{2}+1 / L_{1} C_{2}}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}
$$

2. To find the transfer function using impedance methods, note that the inductor and capacitor have parallel impedance

$$
Z_{L C}=Z_{L} \| Z_{C}=\frac{Z_{L} Z_{C}}{Z_{L}+Z_{C}}=\frac{L s\left(\frac{1}{C s}\right)}{L s+\frac{1}{C s}}=\frac{L s}{L C s^{2}+1}
$$

(Note that I have dropped the numerical subscripts, since no confusion can arise.) Then the circuit is a voltage divider, with transfer function

$$
G(s)=\frac{R}{Z_{L C}+R}=\frac{R}{\frac{L s}{L C s^{2}+1}+R}=\frac{R\left(L C s^{2}+1\right)}{R\left(L C s^{2}+1\right)+L s}=\frac{R L C s^{2}+R}{R L C s^{2}++R L s+R}
$$

Dividing numerator and denominator by $R L C$ gives

$$
G(s)=\frac{s^{2}+1 / L_{1} C_{2}}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}
$$

as in part (1).
3. For component values

$$
L_{1}=1 \mathrm{H}, \quad C_{2}=0.25 \mathrm{~F}, \quad R_{3}=10 \Omega
$$

the transfer function is

$$
G(s)=\frac{s^{2}+4}{s^{2}+0.4 s+4}
$$

Therefore,

$$
G(j \omega)=\frac{-\omega^{2}+4}{-\omega^{2}+0.4 j \omega+4}
$$

You are then to plot the magnitude of this function. This could be done in a spread sheet, by calculating the transfer function frequency by frequency, or by using the Matlab command bode. I used Matlab. (Most of you will probably use a spreadsheet, since we haven't used Matlab this term.) My plot is shown below:

Note that I've plotted the magnitude on a log-log scale. (This is how experts always plot transfer functions.) Most of you will probably plot on a linearlinear scale - that's OK. On either scale, it's clear why this is a "notch filter" - graphically, there's a notch in the plot which is otherwise a straight line.

Unified Engineering I

Fall 2006

Problem S15 (Signals and Systems) SOLUTION

In Problem S14, we found that

$$
G(s)=\frac{s^{2}+1 / L_{1} C_{2}}{s^{2}+s / R_{3} C_{2}+1 / L_{1} C_{2}}
$$

For component values

$$
L_{1}=1 \mathrm{H}, \quad C_{2}=0.25 \mathrm{~F}, \quad R_{3}=10 \Omega
$$

the transfer function is

$$
G(s)=\frac{s^{2}+4}{s^{2}+0.4 s+4}
$$

1. For the input

$$
u(t)=\cos t
$$

the complex frequency is $s=j \omega$, where $\omega=1$, and the complex amplitude is $U=1$. Therefore,

$$
Y=G(s) U=G(1 j) \cdot 1 \approx 0.9825-0.1310 j
$$

The real and imaginary parts of the amplitude correspond to the cosine and (minus) sine amplitudes. Therefore,

$$
u(t) \approx 0.9825 \cos t+0.1310 \sin t
$$

2. For the input

$$
u(t)=3 \sin 2 t
$$

the complex frequency is $s=j \omega$, where $\omega=2$, and the complex amplitude is $U=3$. Therefore,

$$
Y=G(s) U=G(2 j) \cdot 3=0
$$

The amplitude of y is identically zero, because the frequency of the input signal is at exactly the notch frequency. Therefore,

$$
u(t)=0
$$

3. For the input

$$
u(t)=2 \cos 4 t+\sin 4 t
$$

the complex frequency is $s=j \omega$, where $\omega=4$, and the complex amplitude is $U=2-j$. Therefore,

$$
Y=G(s) U=G(4 j) \cdot(2-j) \approx(0.9825+0.1310 j)(2-j) \approx 2.0961-0.7205 j
$$

Finally,

$$
u(t) \approx 2.0961 \cos 4 t+0.7205 \sin 4 t
$$

Problem 4

GIVEN:

ASSUMPTIONS: • Steady flow.

- Neglect kinetic and potential energy effects.

CONCEPTS: • Stoichiometry.

- First Law in CV form.
- Enthalpy of formation.

SOLUTION:

a) The stoichiometric reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+3.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+3.5 \times 3.76 \mathrm{~N}_{2}
$$

With 20% excess air:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+4.2\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+0.7 \mathrm{O}_{2}+4.2 \times 3.76 \mathrm{~N}_{2}
$$

Then, the air/fuel ratio is:

$$
\frac{1}{f}=\frac{m_{\text {air }}}{m_{\text {fuel }}}=\frac{4.2\left(M_{\mathrm{O}_{2}}+3.76 M_{\mathrm{N}_{2}}\right)}{M_{\mathrm{C}_{2} \mathrm{H}_{6}}}=19.22
$$

b) Per kmol of fuel, the products will be:

- 2 kmol of CO_{2}.
- 3 kmol of $\mathrm{H}_{2} \mathrm{O}$.
- 0.7 kmol of O_{2}.
- 15.79 kmol of N_{2}.
c) The enthalpy of a reaction at the standard conditions is:

$$
\begin{array}{r}
\Delta \overline{\mathrm{r}}_{\text {reaction }}=2 \bar{h}_{f, \mathrm{CO}_{2}}^{0}+3 \bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{0}+0.7 \bar{h}_{f, \mathrm{O}_{2}}^{0}+15.79 \bar{h}_{f, \mathrm{~N}_{2}}^{0}- \\
\quad-\bar{h}_{f, \mathrm{C}_{2} \mathrm{H}_{6}}^{0}-4.2 \bar{h}_{f, \mathrm{O}_{2}}^{0}-15.79 \bar{h}_{f, \mathrm{~N}_{2}}^{0}= \\
=2 \bar{h}_{f, \mathrm{CO}_{2}}^{0}+3 \bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{0}-\bar{h}_{f, \mathrm{C}_{2} \mathrm{H}_{6}}^{0}=-1.428 \times 10^{6} \mathrm{~kJ} / \mathrm{kmol}
\end{array}
$$

d) The amount of heat transfer per kmol of fuel is obtained from the first law:

$$
\bar{q}=\sum_{R} n_{R} \bar{h}_{R}-\sum_{P} n_{P} \bar{h}_{P}
$$

The enthalpy of the reactants is:

$$
\sum_{R} n_{R} \bar{h}_{R}=\bar{h}_{\mathrm{C}_{2} \mathrm{H}_{6}}+4.2 \bar{h}_{\mathrm{O}_{2}}+15.79 \bar{h}_{\mathrm{N}_{2}}=\bar{h}_{f, \mathrm{C}_{2} \mathrm{H}_{6}}^{0}+4.2 \bar{h}_{f, \mathrm{O}_{2}}^{0}+15.79 \bar{h}_{f, \mathrm{~N}_{2}}^{0}=\bar{h}_{f, \mathrm{C}_{2} \mathrm{H}_{6}}^{0}
$$

The enthalpy of the products is:

$$
\sum_{P} n_{P} \bar{h}_{P}=2 \bar{h}_{\mathrm{CO}_{2}}+3 \bar{h}_{\mathrm{H}_{2} \mathrm{O}}+0.7 \bar{h}_{\mathrm{O}_{2}}+15.79 \bar{h}_{\mathrm{N}_{2}}
$$

where

$$
\begin{gathered}
\bar{h}_{\mathrm{CO}_{2}}=\bar{h}_{f, \mathrm{CO}_{2}}^{0}+\left.\Delta \bar{h}_{\mathrm{CO}_{2}}\right|_{T=600 \mathrm{~K}} \\
\bar{h}_{\mathrm{H}_{2} \mathrm{O}}=\bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{0}+\left.\Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}}\right|_{T=600 \mathrm{~K}} \\
\bar{h}_{\mathrm{O}_{2}}=\bar{h}_{f, \mathrm{O}_{2}}^{0}+\left.\Delta \bar{h}_{\mathrm{O}_{2}}\right|_{T=600 \mathrm{~K}}=\left.\Delta \bar{h}_{\mathrm{O}_{2}}\right|_{T=600 \mathrm{~K}} \\
\bar{h}_{\mathrm{N}_{2}}=\bar{h}_{f, \mathrm{~N}_{2}}^{0}+\left.\Delta \bar{h}_{\mathrm{N}_{2}}\right|_{T=600 \mathrm{~K}}=\left.\Delta \bar{h}_{\mathrm{N}_{2}}\right|_{T=600 \mathrm{~K}}
\end{gathered}
$$

Then:

$$
\sum_{P} n_{P} \bar{h}_{P}=\left(2 \bar{h}_{f, \mathrm{CO}_{2}}^{0}+3 \bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{0}\right)+\left.\left(2 \Delta \bar{h}_{\mathrm{CO}_{2}}+3 \Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}}^{0}+0.7 \Delta \bar{h}_{\mathrm{O}_{2}}+15.79 \Delta \bar{h}_{\mathrm{N}_{2}}\right)\right|_{T=600 \mathrm{~K}}
$$

$\Delta \bar{h}_{\mathrm{CO}_{2}}, \Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}}, \Delta \bar{h}_{\mathrm{O}_{2}}$ and $\Delta \bar{h}_{\mathrm{N}_{2}}$ are the enthalpy change between the reference state and the substance at the exit conditions ($\left.T_{\text {out }}=600 \mathrm{~K}, p_{\text {out }}=1 \mathrm{bar}\right)$. These $\Delta \bar{h}$ can be found in tables:

$$
\begin{aligned}
\Delta \bar{h}_{\mathrm{CO}_{2}} & =12906 \mathrm{~kJ} / \mathrm{kmol} \\
\Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}} & =10499 \mathrm{~kJ} / \mathrm{kmol} \\
\Delta \bar{h}_{\mathrm{O}_{2}} & =9245 \mathrm{~kJ} / \mathrm{kmol} \\
\Delta \bar{h}_{\mathrm{N}_{2}} & =8894 \mathrm{~kJ} / \mathrm{kmol}
\end{aligned}
$$

Adding the different enthalpy of the different products and reactants, and using the definition of $\Delta \bar{h}_{\text {reaction }}$:

$$
\bar{q}=-\Delta \bar{h}_{\text {reaction }}-2 \Delta \bar{h}_{\mathrm{CO}_{2}}-3 \Delta \bar{h}_{\mathrm{H}_{2} \mathrm{O}}^{0}-0.7 \Delta \bar{h}_{\mathrm{O}_{2}}-15.79 \Delta \bar{h}_{\mathrm{N}_{2}}=1.224 \times 10^{6} \mathrm{~kJ} / \mathrm{kmol}
$$

TIR SOUTIONS BY WAlTZ

a)

$$
\begin{aligned}
& \varphi-\omega_{S}=\left(C_{P} T_{O U T}+\frac{C_{a{ }^{2}}^{2}}{2}\right)-\left(C_{P} T_{1 N}+\frac{C_{N}^{2}}{2}\right) \\
& C_{P} T_{T}=C_{P}+\frac{C^{2}}{2} \Rightarrow \frac{1003.5(300 \mathrm{~K})}{1003.5}-\frac{(150)^{2}}{2(1003.5)}=T_{1 N}=288.8 \mathrm{~K} \\
& \frac{T_{T}}{T}=\left(\frac{P_{T}}{P}\right)^{\frac{\gamma-1}{r}} \quad\left(\frac{300}{288.8}\right)^{\gamma / r-1} \cdot 95 \times 10^{3}=P_{T_{N N}}=108546 P_{a}
\end{aligned}
$$

b) SINCE $q=0$ O, $\omega_{5}=0, h_{T_{\text {oUT }}}=h_{T_{\text {iN }}}$

$$
\begin{array}{ll}
\therefore T_{\text {TOUT }}=T_{T, N}=300 \mathrm{~K} & T_{\text {out }}=T_{T_{U U T}}-\frac{C_{a U T}^{2}}{2 C_{P}} \\
\left(\frac{T_{\text {ouT }}}{T_{\text {ar }}}\right)^{\gamma / \gamma-1} \cdot P_{\text {OUT }}=P_{T_{\text {OUT }}} & T_{\text {OUT }}=299.95 \mathrm{~K} \\
\left(\frac{300}{299.95}\right)^{\gamma / \gamma-1} \cdot 100 \times 10^{3}=P_{\text {TOT }}=100058 P_{a}
\end{array}
$$

c)

$$
\begin{aligned}
\Delta_{s=1}^{s=} C_{p} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(P_{2}\right) & =1003.5 \ln \left(\frac{219.95}{2.88 .8}\right)-287\left(\frac{100 \times 10^{3}}{95 \times 10^{3}}\right) \\
\Delta s & =23.3 \mathrm{~J} / \mathrm{kg} k
\end{aligned}
$$

d) IF EXPANDED IN A REVERSIBLE MANNER ($q-5$, adiabatic)
$T_{T}=$ const if adinatic ξ_{i} no extemal work So $T_{\text {Tow }}=300 \mathrm{~K}$

$$
\begin{aligned}
& T_{\text {TOUT }}=T_{\text {OUT }}+\frac{c^{2}}{2 C_{p}} \Rightarrow \text { COUT }=118 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \left(\frac{T_{\text {Tont }}}{T_{\text {our }}}\right)^{r / r-1}=\frac{P_{T_{\omega T}}}{P_{\text {ost }}}\left(\frac{300}{293.06}\right)^{r / r-1} \cdot 100 \times 10^{3}=108546 \mathrm{~Pa} \\
& P_{\text {Tout }}=P_{T_{1 N}}=108546 P_{n}
\end{aligned}
$$

T13 SOLUTIONS BY WAITZ
a)

$$
\begin{aligned}
& S_{2}-S_{1}=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{V_{2}}{V_{1}}\right)=10085 \ln \left(\frac{270}{300}\right)+4124 \ln \left(\frac{200}{100}\right) \\
& \Delta s=1796 \frac{\mathrm{~J}}{\mathrm{~kg}-\mathrm{k}} \\
& \omega=32550 \mathrm{~J} / \mathrm{kg}
\end{aligned} \quad \Delta u=0 \quad \omega=-C_{V} \Delta T=-10085(270-300)
$$

b) FOR QUAS1-5TATK ADIABATK $\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=\left(\frac{100}{200}\right)^{\left(\frac{42009}{40085}-1\right)}=0.753$ $T_{2}=226 \mathrm{~K}$

$$
\begin{aligned}
& \omega=-10085(226-300)=746290 \mathrm{~J} / \mathrm{kg} \\
& \Delta s=0
\end{aligned}
$$

c) irreversible process:

$$
T_{1}=300 \mathrm{~K}, \quad T_{2}=288 \mathrm{~K}
$$

$$
v_{1}=0.0861 \frac{\mathrm{k} 3}{\mathrm{~kg}}, v_{2}=0.1722 \frac{\mathrm{k} 3}{\mathrm{~kg}}
$$

$$
\begin{aligned}
& \Delta_{s}=C_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{V_{2}}{V_{1}}\right)=716.5 \ln \left(\frac{288}{300}\right)+287 \ln \left(\frac{0.1722}{0.0861}\right) \\
& \Delta S_{\text {irrev. }}=169.7 \frac{\mathrm{~J}}{\mathrm{~kg}-k}
\end{aligned}
$$

Reversible process: $\quad T_{1}=300 \mathrm{~K} \quad T_{2}=227.4 \nless$

$$
\begin{array}{ll}
\text { REVERSIBLE PIGCESS: } \quad V_{1}=0.0861 \frac{\mathrm{w}^{3}}{\mathrm{~kg}} \quad & V_{2}=0.1722 \mathrm{~m}^{3} / \mathrm{kg} \\
\Delta_{S}=716.5 \ln \left(\frac{227.4}{300}\right)+287 \ln \left(\frac{0.1722}{0.0861}\right)=0
\end{array}
$$

