

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

16.03/16.04 Unified Engineering III, IV Spring 2004

Problem Set 13

Name:

Due Date: 5/11/04

	Time
	Spent
	(min)
CP18-20	
S16	
S17	
S18	
Study	
Time	

Announcements: Q7P will be on Friday, May 7 in 35-225

CP18-20

The problems in this problem set cover lecture [C17 = quiz review], C18, C19, C20

1. The operation \oplus is defined for two Boolean variables A, B as follows:

 $A \oplus B = \overline{AB} + A\overline{B}$

Draw the truth table for $A \oplus B$

2. What are the minterms in the expression $A \oplus B \oplus C$?

Hint: Use a dummy variable D for $A \oplus B$, apply the Boolean algebra theorems, then replace D with $A \oplus B$ and repeat the process.

- 3. Convert the following English statements into formal propositions.
 - a. The killer touched both the candlestick and the wrench
 - b. There are exactly 2 sets of fingerprints on the candlestick.
 - c. Joe touched either the candlestick or the wrench, but not both.
 - d. George only touched the candlestick.
 - e. George saw Hannah touch the wrench.
 - f. Hannah touched all the weapons that George touched.
 - g. Hannah saw Joe touch the candlestick

Given that there is only one killer, use resolution to identify the killer.

4. Provide a **Direct Proof** of the following, where a, b, and c are integers

If a|b and b|c, then a|c

Hint: definition of " | " (Divisible) is given in lecture 20.

5. Prove using induction that P(n) = P(n-1) + P(n-2), where P(n) is a Fibonacci number.

Hint: What are Fibonacci numbers? That will help you identify the base case.

6. Prove using induction that if p does not divide any of the numbers a₁, a₂, a₃, ..., a_n (i.e., p is not a common divisor for a₁, a₂, a₃, ..., a_n) ;then p does not divide a₁*a₂*a₃* ...*a_n

Unified Engineering II

Spring 2004

Problem S16 (Signals and Systems)

Do problem 8.8 from Openheim and Willksy, Signals and Systems, reprinted below:

- **8.8.** Consider the modulation system shown in Figure P8.8. The input signal x(t) has a Fourier transform $X(j\omega)$ that is zero for $|\omega| > \omega_M$. Assuming that $\omega_c > \omega_M$, answer the following questions:
 - (a) Is y(t) guaranteed to be real if x(t) is real?
 - (b) Can x(t) be recovered from y(t)?

Note that this system implements a type of single sideband amplitude modulation.

Unified Engineering II

Spring 2004

Problem S17 (Signals and Systems)

Do problem 8.26 from Openheim and Willksy, Signals and Systems, reprinted below:

8.26. In Section 8.2.2, we discussed the use of an envelope detector for asynchronous demodulation of an AM signal of the form $y(t) = [x(t) + A] \cos(\omega_c t + \theta_c)$. An alternative demodulation system, which also does not require phase synchronization, but does require frequency synchronization, is shown in block diagram form in Figure P8.26. The lowpass filters both have a cutoff frequency of ω_c . The signal $y(t) = [x(t) + A] \cos(\omega_c t + \theta_c)$, with θ_c constant but unknown. The signal x(t) is band limited with $X(j\omega) = 0$, $|\omega| > \omega_M$, and with $\omega_M < \omega_c$. As we required for the use of the envelope detector, x(t) + A > 0 for all t.

Show that the system in Figure P8.26 can be used to recover x(t) from y(t) without knowledge of the modulator phase θ_c .

Figure P8.26

Unified Engineering II

Spring 2004

Problem S18 (Signals and Systems)

Do problem 8.34 from Openheim and Willksy, Signals and Systems.