Unified Quiz 4F

March 31, 2004

- Put your name on each page of the exam.
- Read all questions carefully.
- Do all work for each problem on the two pages provided.
- Show intermediate results.
- Explain your work --- don't just write equations.
- Partial credit will be given, but only when the intermediate results and explanations are clear.
- Please be neat. It will be easier to identify correct or partially correct responses when the response is neat.
- Show appropriate units with your final answers.
- Calculators and a 2-sided sheet of paper are allowed
- Box your final answers.

	loooning
#1 (40 %)	
#2 (30%)	
#3 (30%)	
Total	

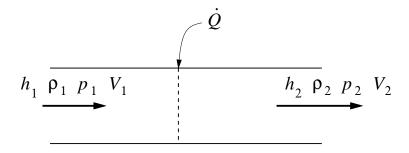
Exam Scoring

Unified Engineering	Spring 2004
Fluids Quiz 2	Page $1/3$

1. (40 %) Air flows at low speed in a duct of constant area $A = 0.1 \text{ m}^2$, through a resistive heater delivering $\dot{Q} = 5000$ W. The heater is a grid of very fine wires which have negligible frictional resistance. The upstream flow has

$$V_1 = 1 \text{ m/s}$$

 $\rho_1 = 1 \text{ kg/m}^3$
 $T_1 = 250 K^\circ$


Also, $c_p = 1000 \, \mathrm{J/kg} \, \mathrm{K^\circ}$ everywhere.

a) Using a control volume spanning the heater, determine the enthalpy equation relating stations 1 and 2.

b) Assuming $V^2 \ll h$ (low speed flow), determine the air temperature T_2 behind the heater.

Since this is a low speed flow, you can also assume that the pressure changes are very small relative to ambient pressure, i.e. $p_2/p_1 \simeq 1$.

- c) Determine the density ratio ρ_2/ρ_1 , and the velocity ratio V_2/V_1 .
- d) Determine the pressure change $p_2 p_1$ across the heater.

Unified Fluids Quiz 2(Q4F) March 31, 2004

Name__

Problem #1 (continued)

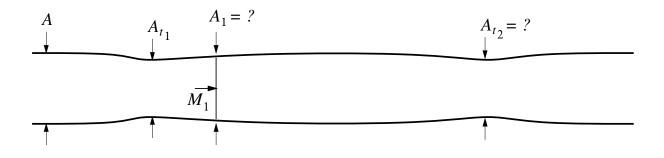
Unified Engineering	Spring 2004
Fluids Quiz 2	Page $2/3$

2. (30 %) A thin supersonic airfoil has a pitot tube mounted on top. The freestream Mach number is $M_{\infty} = 1.3$, and the freestream pressure is some known p_{∞} .

- a) Determine the pitot pressure p_a with the airfoil at $\alpha = 0^{\circ}$.
- b) Determine the pitot pressure p_b with the airfoil at $\alpha = 10^{\circ}$.

Unified Fluids Quiz 2(Q4F) March 31, 2004

Name__


Problem #2 (continued)

Unified Engineering	Spring 2004
Fluids Quiz 2	Page $3/3$

3. (30 %) A duct with air flow has a constant area $A = 1 \text{ m}^2$, except for two throats. The front throat area is $A_{t_1} = 0.8 \text{ m}^2$.

a) The front throat is choked, and has a shock behind it. If the Mach number into the shock is $M_1 = 1.5$, what is the duct area A_1 at the shock location?

b) The adjustable area of the second throat is now closed down until the flow there just barely reaches M = 1. What is this resulting throat area A_{t_2} ?

Unified Fluids Quiz 2(Q4F) March 31, 2004

Name__

Problem #3 (continued)