

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139

Unified Engineering Spring 2005

Problem Set \#4

Solutions

Propulsion PI solutions
Integral momentum eqn.: $\sum F_{x}=\int \rho u_{x}(\vec{u} \cdot \vec{n}) d A$

$$
T+\left(p_{0}-p_{e}\right) A_{e}=\dot{m} u_{e}-\dot{m} u_{0}
$$

a) MOM.FLUX INTO ENGINE
= mass flow rate * momentum per unit mass (i.e. velocity)
$=$ in (velocity)
or from the integral

$$
=\int \rho u_{x}(\vec{u} \cdot \vec{n}) d A=\dot{m}\left(-u_{i n}\right)=50 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot(-40 \mathrm{~m} / \mathrm{s})
$$

(negative because $U_{i n}$ is (t) an outward normal

$$
=-20 \mathrm{kN}
$$ is (-1))

b) MOM. FLUX oUT - SAME AS ABOVE EXCEPT \vec{n} ? \vec{u}_{e} ARE in SAME DIRECTION SO $\vec{u} \cdot \vec{n}$ is (t)

$$
=50 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 700 \mathrm{~m} / \mathrm{s}=35 \mathrm{kN}
$$

c) NET MOM FLUX $=15 \mathrm{kN}$
d) NET PRESSURE FORCE

$$
\begin{aligned}
& \text { PRESSURE FORCE } \\
& =\left(P_{0}-P e\right) A E=(30 \mathrm{kPa}-25 \mathrm{kPa})\left(\mathrm{lm}^{2}\right)=5 \mathrm{kN}
\end{aligned}
$$

e) NET FORCE ON MASS in C.V.

$$
\begin{aligned}
& \text { FORCE ON MASS IN C.V. } \\
& T=\dot{m} u_{e}-\dot{m} u_{0}-\operatorname{Ae}\left(p_{0}-p_{e}\right)=35 \mathrm{kN}-20 \mathrm{kN}-5 \mathrm{kN}=10 \mathrm{kN}
\end{aligned}
$$

f) THIS FOrCE acts in the positive x-Direction ON THE MASS IN THE CU.
9) SiNLE THE AIRCRAFT IS IN STEADY ENGiNE liver flight, the forces must balance. THEREFORE THE SUM OF ALL OTHER FORCES (LIFT, DRAG, WEIGHT)
VEcTOR
MUST MUST $=10 \mathrm{kN}+x$ DIR

Propulsion solutions Pe

$$
\begin{aligned}
& \sum F_{x}=\int_{s} \rho u_{x}(\vec{u} \cdot \vec{n}) d A \\
& \sum F_{y}=\int_{s} \rho u_{y}(\vec{u} \cdot \vec{n}) d A
\end{aligned}
$$

a) NET PRESSURE FORCE iN x DIR $=\left(p_{i}-p_{0}\right) A_{i}-\left(p_{e}-p_{0}\right) A_{e} \cos \theta$

$$
=1.7509 \times 10^{6} \mathrm{~N}
$$

b) THIS Acts to put the flange in tension (wouldbebalanced by NEAT NE FORCE ON FLAN ES

$$
\begin{aligned}
& \text { NET PRESSURE FORCE IN } y-D I R=\left(p_{e}-P_{0}\right) A_{e} S N \theta=(0.095 \mathrm{MP}-0.0 \mathrm{MPa}) ; \\
&=-1(S \mathrm{~N} 800) \mathrm{m}^{2}
\end{aligned}
$$

Propulsion solutions pi
WAlTz

a) since the mass flow is the same at inlet and outlet, then the AXIAL COMPONENT OF VELOCITY MUST BE THE SAME AT INLET AND at outlet. HOWEver, the tangential (SWIRL) COMPONENT OF VELOCITY DECREASES Across the blade row
b) THE AXIAL FLUX OF TANgential momentum is equal to the massflowrate times te fe tangential mom. Per unit mass (i.e. The tang vel.)

$$
\text { AXIAC FLUX of TANG. NOM. }=\dot{m} u_{y}
$$

IT DECREASES ACROSS TEE BLADE ROW. THE FLOW HAS LESS SWIRL VELOCITY LEAVING THE BLADE ROW.
c) SINCE THE FLOW IS INCOMPRESSIBLE ET HE MAGNITUDE OF THE VELOCITY DECREASES, THEN THE AR PRESSURE INCREASES.
d)

$$
\sum F_{x}=R x+\begin{gathered}
\text { Prossulue } \\
\text { forces } \\
\text { in } x x \\
\hline
\end{gathered} \int_{s} \rho u x \vec{u} \cdot \vec{n} d S
$$

- By symmetry, pressure forces on top !! bottom streamlines are the same and thus balance. \therefore only reed to consider pressure forces on left and right of c.v.
- Since upper !' lower surfaces of C.V. are streamlines there is no flux across them. oo Only need to consider fluxes at inlet ${ }^{\prime}$ outlet.

$$
\begin{aligned}
& R_{x}+P_{a} S-p b S= \rho V_{a} \cos \beta_{a}\left(-V_{a} \cos \beta_{a}\right) S+\rho V b \cos \beta b\left(V_{b c o s \beta b b}\right) s \\
& \text { mass flow }= \\
& \therefore V_{a} \cos \beta_{a} S=\rho V_{b} \cos \beta b S \\
& \therefore R_{x}=\left(P b-P_{a}\right) S= \\
& \text { force on ciV. } \\
& P_{b}>P_{a} \text { so } R_{x} \text { is } \mathbb{N}(t) x \text {-direction }
\end{aligned}
$$

\therefore FORCE FELT BY BLADES is $\underset{(\rightarrow x}{\&}$

$$
\begin{aligned}
& \sum F_{y}=R_{y}+\begin{array}{c}
\text { pressione } \\
\text { focus } \\
\text { s. }
\end{array} \\
& \text { rucked }=\int_{s} \rho a_{y} \vec{u} \cdot \vec{n} d s \\
& R_{y}=\rho V_{a} \sin \beta_{a}\left(-V_{a} \cos \beta_{a}\right) s+\rho V b s i n \beta_{b}(V b \cos \beta b) s \\
& R_{y}=\rho S V_{a} \cos \beta_{a}\left(V_{1} \sin \beta_{b}-V_{a} \sin \beta_{a}\right)<0 \\
& \text { = FORCE ON CiV. }
\end{aligned}
$$

$\therefore \quad$ FORCE FELT BY BLADES IS $\mathbb{N} . \uparrow^{\hat{+}}+y$ direction
C)

$$
\begin{aligned}
x \text {-comp OF NET MOM. FLUX } & =\rho u_{i}\left(-u_{i}\right) A_{i}+\rho u_{e} \cos \theta\left(u_{e}\right) A_{e} \\
& =100 \frac{\mathrm{~kg}}{\mathrm{~s}}\left(-500 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+100 \frac{\mathrm{~kg}}{\mathrm{~s}}\left(1500 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cos 80^{\circ} \\
& =-23.9 \mathrm{kN}
\end{aligned}
$$

$$
y \text {-comp of NET MOM.fuxx }=\rho(- \text { URsine } \theta) \text { Ul Ae }
$$

$$
=100 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot\left(-1500 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \sin 80^{\circ}
$$

$$
=-147.7 \mathrm{kN}
$$

d) x-COMP OF NET MUM. FLUX WOULD be balanced BY a negative force un flange \therefore flange IS IN TENSION.
a)

$$
\begin{aligned}
& F_{x \text { flange }}+1.7509 \times 10^{6} \mathrm{~N}=-23.9 \times 10^{3} \mathrm{~N} \\
& \therefore F_{x} \text { flange }=-1.77 \times 10^{6} \mathrm{~N} \\
& \text { Fyflange }+\left(-4.9 \times 10^{3} \mathrm{~N}\right)-400 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{5^{2}}=-147.7 \times 10^{3} \mathrm{~N} \\
& \therefore \text { Fy flange }=-0.139 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

f) THE FORCE is TransMITTED From the fluid To The NOZZLE STRUCTURE BY VISCOUS AND PRESSURE FORCES ON THE WALLS OF THE NOZZLE.

UE Fluids
Ell Solon
Spring' 05
a) Anderson ($p .463$)
given $P_{\infty}=0.819 \mathrm{~kg} / \mathrm{m}^{3}, P_{\infty}=0.61 \mathrm{~atm}=0.616 \times 10^{5} \mathrm{~Pa}$

$$
\begin{aligned}
& h_{\infty}=\frac{\gamma}{\gamma-1} \frac{P_{\infty}}{\rho_{\infty}}=2.633 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& V_{\infty}=300 \mathrm{~m} / \mathrm{s} \\
& h_{\infty}=h_{\infty}+\frac{1}{\alpha} V_{\infty}^{2}=3,083 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

(constant every where)

$$
\begin{aligned}
& P_{0_{\infty}}=P_{\infty}\left(\frac{h_{0 \infty}}{h_{\infty}}\right)^{\frac{\gamma}{\gamma-1}}=1.737 P_{\infty}=1.07 \times 10^{5} P_{a} \\
& P=P_{D_{\infty}}\left[1-\frac{1}{2} \frac{y^{2}}{h_{0 \infty}}\right]^{\frac{\gamma}{\gamma-1}}=0,505 \times 10^{5} \mathrm{~Pa} \\
& 1-\frac{1}{2} \frac{v^{2}}{h_{0 \infty}}=\left(\frac{P}{P_{0 \infty}}\right)^{\frac{\gamma-1}{\partial}}=\left(\frac{0.505}{1,07}\right)^{\frac{1}{3,5}}=0.807 \\
& V=\left(2 h_{0_{\infty}}(1-0.007)\right)^{\frac{1}{2}}=345 \mathrm{~m} / \mathrm{s} \\
& M_{\infty}^{2}=\frac{V_{\infty}^{2}}{\frac{\partial P_{\infty}}{\rho_{\infty}}}=0.8547 \in\left\{\begin{array}{l}
\text { Owing the Mach Number } \\
\text { instead }
\end{array}\right. \\
& \frac{P_{0}}{P_{\infty}}=\frac{P}{P_{\infty}} \frac{\left(1+\frac{r-1}{2} M^{2}\right)^{\frac{r}{r 1}}}{\left(1+\frac{r-1}{2} M_{\infty}^{2}\right)^{\frac{x}{r-1}}}=\frac{0,5 \mathrm{~atm}}{0.6 \mathrm{~atm}} \frac{\left(1+\frac{r-1}{2} M^{2}\right)^{\frac{r}{x-1}}}{\left(1+\frac{x-1}{2}(0.8477)^{\frac{x}{7 /}}\right.} \\
& M^{2}=1.197 ; \quad a^{2}=(\gamma-1) h_{0}\left[1+\frac{\gamma-1}{\gamma} \mathrm{~m}^{2}\right]^{-1}=0.995 \times 10^{3} \mathrm{~m}^{2}
\end{aligned}
$$

$$
V=\sqrt{M^{2} a^{2}}=345 \mathrm{~m} / \mathrm{s}
$$

b) Andersen 7,10

Incompressible Bernalli:

$$
\begin{aligned}
& P_{0}=P_{\infty}+\frac{1}{2} P_{\infty} V_{\infty}^{2}=P+\frac{1}{2} P_{\infty} V^{2} \\
& V=\left[V_{\infty}^{2}+\frac{2\left(P_{0}-P\right)}{\rho}\right]^{\frac{1}{2}}=\left[300^{2}+\frac{2(061-0.5) \cdot 1.01 \times 0^{5} 7^{2}}{0.189}\right]^{0.819} \\
& V=342 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

a) $\oiint \rho \vec{V} \cdot \hat{n} h_{0} d A=\iint e \dot{q} d D$

$$
-\rho_{1} V_{1} h_{0_{1}} A_{1}+\rho_{2} V_{2} h_{O_{2}} A_{2}=\dot{Q}
$$

By mass conservation we also have $p_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}$
Also, for low speed flow, $h_{0}=\frac{h}{1}+\frac{1}{2} V^{2} \approx h=c_{p} T_{1}=290000 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& f_{1} V_{1} A_{1}\left(h_{O_{2}}-h_{Q_{1}}\right)=\dot{Q} \quad \max h_{O_{2}}+h_{2}=C_{p} T_{2}=340000 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& V_{1}(340000-290000)=\frac{\dot{Q}}{\rho_{1} A_{1}}=\frac{1000 \mathrm{~W}}{1.2 \mathrm{~g} \mathrm{~g}^{3} \cdot 0.01 \mathrm{~m}^{2}}=83333 \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

minimum $V_{1}=\frac{83333}{380000-290000}=1.67 \mathrm{~m} / \mathrm{s}$
b) State eon: $\rho_{2}=\frac{\gamma}{\gamma-1} \frac{p_{2}}{h_{2}}=\frac{1,4}{0.4} \frac{10^{5} p_{1}}{34000}=1.03 \mathrm{~kg} / \mathrm{m}^{3}$

Continuity: $\quad \rho_{2} V_{2} A_{2}=\rho_{1} V_{1} A_{1}$

$$
V_{2}=V_{1} \frac{\rho_{1}}{\rho_{2}} A_{A_{2}}^{1}=1.67 \mathrm{~m} / \mathrm{s} \cdot \frac{1.2}{1.03}=1.947 \mathrm{~m} / \mathrm{s}
$$

