

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139

Unified Engineering Spring 2005

Problem Set \#5

Solutions

PS 4 solution
a) According to Breguet Range Equation,

$$
R=\underbrace{\frac{h}{g}}_{\text {fuel type }} \underbrace{\eta}_{\text {etticiecy }} \underbrace{\eta_{o v}}_{\text {aerodynamics }}\left(\frac{L}{D}\right) \underbrace{\ln \left(\frac{\left.W_{\text {initial }}\right)}{W \text { final }}\right)}_{\text {structure. }}
$$

From the problem sentence, $\quad \eta_{o v}=$ constant We can also assume $\frac{h}{g}, \ln \left(\frac{W_{\text {initial }}}{W_{\text {Anal }}}\right)$ constant and independent of flight condition. Thus, max range is achileuen when $\frac{L}{D}=\frac{C_{2}}{C_{D}}$ is maximum:
From SPL 2 data, C_{L} is known, and $C_{D}=0.013+C_{D}$ labs.
By inspecting the slope, $\left(\frac{C_{4}}{C_{0}}\right)_{\max }=8.41$ at $C_{L}=0.7$.

$$
C_{L}=\frac{L^{1}}{\frac{1}{2} P V^{2} S} \Leftrightarrow V=\sqrt{\frac{W / \mathrm{s}}{\frac{1}{2} \rho C_{L}}}=\sqrt{\left.\frac{5\left(P_{a}\right)}{\frac{1}{2} \cdot 1.22\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \cdot 0.7}=\begin{array}{c}
0.42 \\
(\mathrm{~m} / \mathrm{s})
\end{array}\right)}
$$

b) The maximum endurance condition corresponds with the minimum energy expenditure. The minimum pouch required occurs when $\frac{C_{L}^{3 / 2}}{C_{D}}$ is maximized.
From the dragonfly $C_{2}^{\frac{3}{2}}$ vs C_{D} cuncs, this condition is achieve for $C_{L}=1.2$

$$
V=\sqrt{\frac{\frac{x}{2}(\mathrm{~W} / \mathrm{F})}{\frac{1}{2} C_{L}}}=\sqrt{\frac{5(\mathrm{Pd})}{\frac{1}{2} \cdot 1.22 \cdot 1.2}}=2.61(\mathrm{~m} / \mathrm{s})
$$

c) For steady turning flight, the equilibrium equation in vertical direction is

$$
\begin{aligned}
& \sum F_{y}=L \cos \theta-w=0 \\
& \Leftrightarrow L=\frac{w}{\cos \theta} . \\
& C_{L}=\frac{L}{\frac{1}{2} P V^{2} S}=\frac{w / \cos \theta}{\frac{1}{2} \rho V^{2} S} \Leftrightarrow V=\sqrt{\frac{2(w / s)}{\frac{1}{2} \rho \cos \theta C_{L}}}
\end{aligned}
$$

Banking does not change the C_{L} vs C_{b} ounce.
Thus, for maximum range, $C_{L}=0.7$.

$$
V=\sqrt{\frac{5(\mathrm{~Pa})}{\frac{1}{2} \cdot 1.22 \cdot 0.7 \cdot \cos 20}}=3.53(\mathrm{~m} / \mathrm{s})
$$

For maximum endurance, $\quad C_{2}=1.2$

$$
V=\sqrt{\frac{5}{\frac{1}{2} \cdot 1.22 \cdot 1.2 \cos 20^{\circ}}}=2.70(\mathrm{~m} / \mathrm{s})
$$

P5sautions
To find max thrust, use Pavail-Pregd $=\frac{d}{d t}$ PeE. $r \frac{d}{d t}$ ki.
AND SOLVE FOR T FOR EACH OF
THE THREE MANEUVERS - THEN PICK THE BIGGEST ONE.

$$
T V-D V=w \frac{d h}{d t}+\frac{d}{d t}\left(\frac{1}{2} \frac{W}{g} V^{2}\right)
$$

CASE 1) COMBAT TURN $\therefore \frac{d h}{d t}=0, \frac{d}{d t} V^{2}=0$

$$
\begin{aligned}
& T=D, L=9 W \quad D=\frac{1}{2} \rho V^{2} S k C_{L}^{2}+\frac{1}{2} \rho V^{2} S C_{D_{0}} \\
& \frac{T}{W}=\frac{1}{2} \rho V^{2}\left(\frac{1}{W / S}\right) k \frac{L^{2}}{\left(\frac{1}{2}-V^{2} S\right)^{2}}+\frac{1}{2} \rho V^{2}\left(\frac{1}{W / 5}\right) C_{D} \\
& \begin{array}{l}
\frac{T}{W}=\underbrace{\frac{k n^{2}}{\frac{1}{2} v^{2}}\left(\frac{W}{s}\right)}_{3.18}+\underbrace{\left(\frac{C_{D_{0}}}{5}\right)}_{0.0227} \frac{1}{2} \rho V^{2} \\
3.2 \\
\therefore T=\left\{\begin{array}{l}
v=0.7(295 \mathrm{~m} / \mathrm{s})=206.5 \\
\rho=0.34 \mathrm{~kg} / \mathrm{cm}^{3} \\
k=0.0 .2 \\
C D_{0}=0.01 \\
n=6 \\
W / \mathrm{s}=3200 \mathrm{~N} / \mathrm{m}^{2}
\end{array}\right.
\end{array} \\
& T=627,2 \mathrm{kN}
\end{aligned}
$$

CASE 2) $M=0.8$ TU $M=2.0 \mathrm{iN} 15$ SECONDS

$$
\begin{aligned}
& V_{\text {final }}=2(295 \mathrm{~m} / \mathrm{s})=590 \mathrm{~m} / \mathrm{s} \\
& V_{\text {initial }}=0.8(295 \mathrm{~m} / \mathrm{s})=236 \mathrm{~m} / \mathrm{s} \\
& \frac{\Delta V}{\Delta t}=\frac{590 \mathrm{~m} / \mathrm{s}-236 \mathrm{~m} / \mathrm{s}}{15 \mathrm{~s}}=23.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=\frac{d V}{d t}
\end{aligned}
$$

2 of 2

$$
\begin{gathered}
\frac{T}{W}=\frac{k n^{2}}{\frac{1}{2} \rho v^{2}}\left(\frac{W}{s}\right)+\frac{C_{D_{0}}}{\left(\frac{w}{s}\right)^{2} \rho v^{2}}+\frac{1 d}{V d t}\left(\frac{1}{2} \frac{v^{2}}{g}\right) \\
n=1
\end{gathered}
$$

TRY WORST CASE FOR $v \xi_{i}^{\prime} k \hat{1}^{\prime} C_{D o}$ (o) $M=?$

$$
\begin{aligned}
& \frac{I}{W}=\underbrace{\left.\frac{w}{5}\right)}_{\substack{\frac{k}{\frac{1}{2} \rho V^{2}}}}+\underbrace{\frac{C_{D}}{\left(\frac{W}{5}\right)} \frac{1}{2} \rho V^{2}}+\underbrace{\frac{v}{9} \frac{d V}{d t}}_{2.411} \\
& \left.\begin{array}{l}
C_{0}=0.026 \\
V=590 \mathrm{~m} / \mathrm{s} \\
W=3200 \mathrm{~N}
\end{array}\right\} \Rightarrow T=2.91 \quad \therefore T=(2.91)(9.8)(20,000) \\
& \frac{W}{S}=3200 \mathrm{~N} / \mathrm{m}^{2} \\
& \rho=0.34 \mathrm{~kg} / \mathrm{m}^{3} \quad T=570.3 \mathrm{kN}
\end{aligned}
$$

CASE 3) STRAIGHTUP AT $M=0,5$

$$
\begin{aligned}
& \frac{T}{W}=\frac{k}{\frac{1}{2} \rho v^{2}}\left(\frac{W}{s}\right)+\frac{C_{\infty}}{\left(\frac{W}{5}\right)^{2}} \frac{1}{2 \rho v^{2}}+\frac{1}{W V V}\left(W \frac{d h}{d t}\right) \\
& \begin{array}{l}
\sum_{1}^{\prime} \frac{d h}{d t}=V \text { so } \frac{T}{W}=\underbrace{\frac{k}{\frac{1}{2} \rho V^{2}}\left(\frac{W}{s}\right)}_{0.182}+\underbrace{\frac{C_{D_{0}}}{\left(\frac{W}{5}\right)} \frac{1}{2} \rho V^{2}}_{0.0116}+1 \\
V=0.5(295 \mathrm{~m} / \mathrm{s})-1475 \mathrm{~m} / \mathrm{s}
\end{array} \\
& \left\{\begin{array}{l}
V=0.5(295 \mathrm{~m} / \mathrm{s})-147.5 \mathrm{~m} / \mathrm{s} \\
w / \mathrm{s}=3200 \mathrm{~N} / \mathrm{m}^{2}, \rho=0.34, \quad k=0.21, C_{0}=0.01
\end{array}\right. \\
& \frac{T}{W}=1.19 \quad \therefore \quad T=9.8 .20,000(1.19)=233.9 \mathrm{kN} \\
& \because \operatorname{SIZE} \text { ENGINE FOR MAX }=627 \mathrm{kN}
\end{aligned}
$$

96 Solutions
WAITZ
a) $T=v_{i} u_{e}+A_{e}\left(p_{e}-p_{0}\right)$

$$
\begin{aligned}
& \dot{n}=\frac{P_{c} \sqrt{r}}{\sqrt{R T_{c}}} \frac{M}{\left[1-\frac{\gamma-1}{2} M^{2}\right]^{\frac{\gamma+1}{(\gamma+1)}}} A=\frac{\frac{P \sqrt{\gamma}}{\sqrt{R T c}}}{\left[1-\frac{r-1}{2}\right]^{\frac{\gamma+1}{2(\gamma-1)}}} \cdot A^{*} \\
& \frac{A_{e}}{A^{*}}=\frac{1}{M_{e}}\left[\frac{1+\frac{\gamma-1}{2} M_{e}^{2}}{\frac{\gamma+1}{2}}\right]^{\frac{\gamma+1}{2(\gamma-1)}} \\
& P_{e}=\frac{P_{c}}{\left[1+\frac{r-1}{2} M_{e}\right]^{\gamma / r-1}} \quad T_{e}=\frac{T_{c}}{1+\frac{\gamma-1}{2} M_{e}^{2}} \quad U_{e}=M_{e} \sqrt{\gamma R T_{e}}
\end{aligned}
$$

1 PUT THESE inTO A SPREAOSHEET ANO FOUND

$$
\begin{aligned}
& \frac{A_{e}}{A^{*}}=13.333 \Rightarrow M_{e}=4.04 \Longrightarrow U_{e}=2448.9 \mathrm{~m} / \mathrm{s} \\
& \dot{m}=1.98 \mathrm{~kg} / \mathrm{s} \\
& \therefore P_{e}=27,545 \mathrm{~Pa} \\
& \therefore T=4257 \mathrm{~N} \\
& I_{s p}=\frac{T}{\dot{m} g}=219.5 \mathrm{~s}
\end{aligned}
$$

b) FOR 1DEAUY EXPANDED $T=$ wille \Rightarrow

$$
I_{s p}=\frac{u_{e}}{g}=249.9 \mathrm{~s} \int_{\text {exp. }}^{\text {idad }} \text { en }
$$

THS NOZZLE IS
OVEREXPANDED AT LAUNCH pe<po
c) FOR DEALH EXPANDED, $D=0$, verticallaunch

$$
\begin{aligned}
& U_{\text {burnout }}=g\left[I_{I_{\text {pideal }}} \ln \left(\frac{\min +\text { const }}{m \operatorname{sinill}}\right)-I_{\text {burnout }}\right] \\
& h_{\text {bornost }}=g\left[-t_{b_{0}} \frac{I_{\text {pidec }} \ln \left(\frac{w_{i}}{w_{s}}\right)}{\left(\frac{m_{i}}{\left.m_{g}-1\right)}\right.}+t_{p_{0}} I_{\text {pidal }}-\frac{1}{2} t_{b_{0}}^{2}\right] \\
& t_{b_{0}}=\frac{m_{\text {prpellaut }}}{m}=15.15 \mathrm{~s} \\
& u_{\text {binout }}=3246 \mathrm{~m} / \mathrm{s} \\
& h_{\text {burnout }}=18837 \mathrm{~m}
\end{aligned}
$$

GLIDE PHASE: $\frac{1}{2} m_{\text {final }} u_{\text {fina }}^{2}=u_{\text {sin }} l g \Delta h$

$$
h_{\text {glide }}=\Delta h=537692 \mathrm{~m}
$$

d) $m_{i}=41 \mathrm{~kg}, m_{\text {sinal }}=11 \mathrm{~kg} \quad$ (still 30 kg fuel)

$$
A R=14.667 \Rightarrow M_{e}=4.13
$$

TAKE off TARRGT HIGHER, Ispideal aljo higker but weight penalty,

$$
A=i n p_{e}+\left(p_{t} p\right) A_{e}
$$

NET EFFECT IS BAD $h_{\text {TUTAL }}=506305 \mathrm{~m}$

$$
\begin{aligned}
& \Omega=R P M \cdot \frac{\pi}{30}=6000 \cdot \frac{\pi}{30}=628.32 \mathrm{md} / \mathrm{s} \\
& \Omega R=628,3 \mathrm{~m} / \mathrm{s} \cdot 3.5 \cdot \mathrm{~m} \cdot 0.0254 \mathrm{~m} / \mathrm{in}=55.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Velocity triangle:

$$
\begin{aligned}
& V_{\text {tip }}^{2}=V^{2}+(\Omega R)^{2}=3156 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& h=c_{1} T+\frac{1}{2} V_{\text {to }}^{2}=1000.290+\frac{1}{2} .3156=291580 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& T_{0}=\frac{h_{0}}{C_{p}}=291.6 \mathrm{~K} \quad 1.6 \mathrm{~K} \text { warmer than ambicat. } \\
& \rho_{0}=\left(\frac{T_{0}}{\rho}\right)^{\frac{1}{-1}}=\left(\frac{291.6}{290}\right)^{2,5}=1.0137, \rho_{0}=1.0137 p=1.216 \mathrm{l} / \mathrm{m}^{3} \\
& \frac{P_{0}}{p}=\left(\frac{T_{0}}{T}\right)^{\frac{1}{d}}=\left(\frac{291.6}{290}\right)^{3.5}=1.0192, \quad P_{0}=1.0192 p=1.0192 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Still air: $T=300 \mathrm{~K}, \quad p=10^{5} \mathrm{~Pa}$

$$
\rightarrow a=\sqrt{8 R T}=\sqrt{1,4 \cdot 287 \cdot 300}=347,2 \mathrm{~m} / \mathrm{s}
$$

a) $\left[M_{1}=\frac{V}{a}=\frac{450 \mathrm{~m} / \mathrm{s}}{347.2 \mathrm{~m} / \mathrm{s}}=1.296 \mathrm{z} 1.30\right.$
6) From shock table (p^{871})
for $M_{1}=1.3 ; \quad \frac{T_{2}}{T_{1}}=1.191, \frac{p_{2}}{p_{1}}=1.805$

$$
T_{2}=1.191 T_{1}=357 \mathrm{~K} \quad(183 \mathrm{~F} \text { tasty })
$$

c) $\left[p_{2}=1.805 p_{1}=1.805+10^{5} \mathrm{~Pa}\right.$
d) $M_{2}=0,786$ (in shock frame)

$$
\begin{aligned}
& a_{2}=\sqrt{8 R T_{2}}=378.7 \mathrm{~m} / \mathrm{s} \\
& V_{2}=M_{2} a_{2}=297.7 \mathrm{~m} / \mathrm{s} \text { (in shock frame) }
\end{aligned}
$$

$$
\begin{aligned}
& \left(V_{2}\right)_{\substack{\text { toserect } \\
\text { fane }}}=297.7-450=-152 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

e) Sound waves in fluid behind shock travel at $a_{2}=378.7 \mathrm{~m} / \mathrm{s}$ Fluid itself is traveling at $152 \mathrm{~m} / \mathrm{s}$ to left
So the waves move at $378.7+152=530.7 \mathrm{~m} / \mathrm{s}$ foster then The sound waves will catch up with shock.
One can also look in the shock frame: downstream $M_{2}<1$, so waves can make their way upstream.

a) Module is a gas reservoir with $T_{0}=300 \mathrm{~K}, p_{0}=10^{5} P_{a}, \rho_{0}=\frac{8 R T_{0}}{p_{0}}=1.205$ $R=287 \mathrm{~J} / \mathrm{gk}$
Hole is a sonic throat: $A^{*}=\frac{\pi}{4}(0.01 \mathrm{~m})^{2}=7,85 \times 10^{-5} \mathrm{~m}^{2}$

$$
\begin{aligned}
& \dot{m}=p^{*} A^{*} A^{*}=\rho_{0}\left[1+\frac{\gamma-1}{2}\right)^{\frac{-1}{\gamma-1}} a_{0}\left(1+\frac{\gamma-1}{2}\right)^{-\frac{1}{2}} A^{*} ; a_{0}=\sqrt{\gamma R T_{0}}=347 \mathrm{~m} / \mathrm{s} \\
& \dot{m}=0.019 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

b) Volume of module: $\quad V=\frac{\pi}{4} D^{2} l=\frac{\pi}{4}\left(3 \mathrm{~m}^{2} 8 \mathrm{~m}=56,55 \mathrm{~m}^{3}\right.$

Mass of air in module: $m=\rho D=68.1 \mathrm{~kg}$
State equine $p=\rho R T=\frac{m}{\nu} R T=m\left(\frac{R T}{\nu}\right)$
since $\frac{R T}{\nu}$ is constant: $\dot{p}=\dot{m} \frac{R T}{D}=0.019 \mathrm{~kg} / \mathrm{s} \cdot \frac{287.300}{56.55 \mathrm{~m}^{3}}$

$$
p=28.9 \mathrm{~Pa} / \mathrm{s}
$$

c) $\rho=\frac{m}{\nu}$, so $\dot{\rho}=\frac{\dot{m}}{\nu}$ since $\nu=$ constant

$$
\dot{m}=\rho_{0} a_{0} A^{*} \cdot \text { const, }
$$

ρ_{0} 's unaffected by temperature, since volume is fixed.

$$
\rightarrow a_{0}=\sqrt{\gamma R T}
$$

Reducing T will reduce a_{0} and hance reduce m

