
Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

 Unified Engineering
Spring 2005

Problem Set #7

Name:

Due Date: Tuesday, March 29, 2005 at 5pm

Time
Spent
(minutes)

S1

S2

S3

S4
C1

C2

C3
C4

Study
Time

Unified Engineering II Spring 2005

Problem S1 (Signals and Systems)

1. Find and plot the step response of the system

�

�

u(t) y(t)

�

�

C1

R1

C2

R2

where C1 = 1 F, C2 = 1/3 F, R1 = 1 Ω, and R2 = 4 Ω.

2. For the input signal

u(t) =


0, t < −1
1, −1 ≤ t < 1
−2, t ≥ 1

find and plot the output y(t), using superposition.

Unified Engineering II Spring 2005

Problem S2 (Signals and Systems)

A system has step response given by

gs(t) =

{
0, t < 0
e−t − e3t, t ≥ 0

Find and plot the response of the system to the input

u(t) =

{
0, t < 0
1− e−2t, t ≥ 0

using Duhamel’s integral.

Unified Engineering II Spring 2005

Problem S3 (Signals and Systems)

Note: Please do not use official or unofficial bibles for this problem.

An airfoil with chord c is moving at velocity U with zero angle of incidence through
the air, as shown in the figure below:

U

The air is not motionless, but rather has variations in the vertical velocity, w. As the
airfoil flies through this gust field, the leading edge of the airfoil “sees” a variation
in the angle of attack. If w is small compared to U , then the angle of attack change
seen by the airfoil is α = w/U . Since the velocity profile varies in space, the angle of
attack seen by the airfoil is a function of time, α(t).

One might expect that the lift coefficient of the airfoil is just

CL(t) = 2πα(t)

However, the airfoil does not respond instantaneously as the airfoil encounters the
gust. If the airfoil encounters a “sharp-edged gust,”so that the apparent change in
the angle of attack is a step function in time,

α(t) = α0σ(t)

then the change in lift is given by

CL(t) = 2πα0ψ(t̄)

where t̄ = 2Ut/c is the dimensionless time.ψ(t̄) is the Küssner function, and is the step
response of the airfoil (neglecting multiplicative constants), if the input is considered
to be the vertical gust at the leading edge as a function of time, and the output
is considered to be the lift as a function of time. The Küssner function can be
approximated as

ψ(t̄) =

{
0, t̄ < 0
1− 1

2
e−0.13t̄ − 1

2
e−t̄, t̄ ≥ 0

Assuming that the airfoil acts as an LTI system, determine and plot the lift
coefficient, CL(t), and the gust velocity, w(t), for the following conditions:

c = 1 m

U = 1 m/s

w(t) =

{
0 m/s, t < 0s
0.1 · (1− e−2t) m/s, t ≥ 0s

Unified Engineering II Spring 2005

Problem S4 (Signals and Systems)

Note: This problem is similar to one given a couple years ago. Please try to do
this one without looking at bibles — the solution is instructive.

One of the benefits of the approach of using the superposition integral is that
you don’t have to guess the particular solution — it pops right out of the integral,
automatically. In some cases, the particular solution can be hard to guess, but easy
to find using the convolution integral. To see this, consider the system described by
the differential equation

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = u(t)

1. Find the step response of the system.

2. Take the derivative of the step response to find the impulse response.

3. Now assume that the input is given by

u(t) = e−2tσ(t)

Before doing part (4), try to find the particular solution by the usual method,
that is, by intelligent guessing. Be careful — it may not be what you expect!

4. Now find y(t) using the superposition integral. Is the particular solution what
you expected?

1

The problems in this set cover lectures C1, C2, C3 and C4.

Download and unzip the following file from the C&P class webpage:

C&P_PSet1_Files.zip
Some answers (C2b, C3b, C4a, C4c) will need to have their answers zipped and uploaded
to:

https://spacestation.mit.edu/unified/

Please zip/compress/store all four .adb files. Name the file:
“C234_Lastname_Firstname.zip”

Problem C1. Understanding .ali files

With the following files:
 linked_list.ads
 linked_list.adb
 list_test.adb
 linked_list-addtofront.adb

a. Compile linked_list-addtofront.adb.

i. What was the message from the compiler regarding generating code for
the file?

ii. Turn in a hard copy of the header of
linked_list-addtofront.ali

b. Compile list_test.adb

i. Turn in a hard copy of the header of list_test.ali
ii. Turn in a hard copy of the header of linked_list.ali

Note: For the my_function_cq.ali shown in class, the header is

V "GNAT Lib v3.15"
M F W=b
A -gnatwu
A -gnato
A -g
P
R nnvnnnnvnnnnnvvvvvvnnvnnnnnnnnnnnvnnnnnnnnnnnnnnvvnn

U my_function%b my_function_cq.adb 77fe74e5 NE SU
W ada%s ada.ads ada.ali
W ada.text_io%s a-textio.adb a-textio.ali

Basically all information between the first line (starting with a V) up to and not including
the line starting with a D.

Turn in a hardcopy of your answer.

Problem C2. Recursive binary search

With the following files:

 PSET1_2.ads
 PSET1_2.adb
 Test_PSET1_2.adb

a. Write an algorithm (pseudo code) to recursively search an array that is sorted in

descending order.

b. Modify Binary_Search function in PSET1_2.adb to implement your algorithm

Turn in a hard copy of your algorithm (pseudo_code) and hardcopy code listing
for PSET1_2.adb ONLY. Submit an electronic copy of PSET1_2.adb
online.

Note: You can still use Test_PSET1_2.adb to test your new implementation.
Make sure that you input the numbers in descending order while initializing the
array.

Problem C3. Stacks

With the following files:

 my_expression_evaluator.ads
 my_expression_evaluator.adb
 prefix_evaluator.adb

a. Write an algorithm (pseudo code) to evaluate a postfix expression.

b. Implement your algorithm as a separate .adb file.

Assume that all operands are single digits and that the operators are the binary
operators ‘*’, ‘+’, ‘-‘, ‘/’.

Turn in a hard copy of your algorithm (pseudo_code) and hardcopy code listing
for separate.adb ONLY. Submit an electronic copy of separate.adb
online.

Note: prefix_evaluator.adb gives you insight into how prefix
expressions are evaluated.

Problem C4. Doubly Linked Lists

With the following files:

 doubly_linked_list.ads
 doubly_linked_list.adb

a. Define the record declaration for a node in a doubly linked list. Modify the record

declaration in doubly_linked_list.ads to handle doubly linked lists.

b. Write an algorithm (pseudo code) to insert a node into a doubly linked list that is

sorted in descending order.

Note: Take a look at the notes on singly linked lists.

Inserting in ascending order into a doubly linked list can be visualized as shown
below:

Consider a simple doubly linked list:

10 11 13

head

Figure 1. Sample Doubly Linked List

 The insertion in ascending order can be visually represented as shown below:

10 11 13

12

NewNode

NewNode.Next := Current

Previous Currenthead

NewNode.Prev:= Previous

10 11 13

12
NewNode

Previous Currenthead

10 11 13

12

NewNode

NewNode.Next := Current

Previous Currenthead

NewNode.Prev:= Previous

10 11 13

12
NewNode

Previous Currenthead

Previous.Next := NewNode

10 11 13

12
NewNode

Previous Currenthead

Current.Prev:= NewNode

10 11 13

12
NewNode

Previous Currenthead

Previous.Next := NewNode

10 11 13

12
NewNode

Previous Currenthead

Current.Prev:= NewNode

10 11 13

12
NewNode

Previous Currenthead

Figure 2. Insert in Ascending Order

c. Implement your algorithm as the Insert_In_Reverse_Order procedure in
doubly_linked_list.adb. Assume the data field consists of a single
integer.

Turn in a hard copy of your algorithm (pseudo_code) and hardcopy code listing
for doubly_linked_list.ads and doubly_linked_list.adb
ONLY. Submit an electronic copy of doubly_linked_list.ads and
doubly_linked_list.adb online.

