
Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

 Unified Engineering
Spring 2005

Problem Set #9
Solutions

Unified Engineering II Spring 2005

Problem S7 Solution (Signals and Systems)

1. The convolution is given by

y(t) = g(t) ∗ u(t) =
∫ ∞

−∞
g(t− τ)u(τ) dτ

Note that u(τ) is nonzero only for −3 ≤ τ ≤ 0, and g(t− τ) is nonzero only for 0 ≤ t− τ ≤ 3,
that is, for −3 + t ≤ τ ≤ t. So there are four distinct regimes:

(a) t < −3

(b) −3 ≤ t ≤ 0

(c) 0 ≤ t ≤ 3

(d) t > 3

For cases (a) and (d), there is no overlap between g(t− τ) and u(τ), so y(t) = 0. For case (b),
the overlap is for −3 ≤ τ ≤ t. So

y(t) =
∫ ∞

−∞
g(t− τ)u(τ) dτ

=
∫ t

−3

sin(−2π(t− τ)) sin(2πτ) dτ

At this point, we have to do a little trig:

sin(−2π(t− τ)) sin(2πτ) = sin(2π(τ − t)) sin(2πτ)
= [sin(2πτ) cos(2πt)− cos(2πτ) sin(2πt)] sin(2πτ)
= cos(2πt) sin2(2πτ)− sin(2πt) cos(2πτ) sin(2πτ)

= cos(2πt)
1− cos(4πτ)

2
− sin(2πt)

sin(4πτ)
2

So the integral is given by

y(t) =
∫ t

−3

cos(2πt)
2

dτ −
∫ t

−3

cos(2πt)
2

cos(4πτ) dτ −
∫ t

−3

sin(2πt)
2

sin(4πτ) dτ

=
cos(2πt)

2
(t + 3)− cos(2πt)

8π
sin(4πτ)

∣∣∣∣t
τ=−3

+
sin(2πt)

8π
cos(4πτ)

∣∣∣∣t
τ=−3

=
cos(2πt)

2
(t + 3)− cos(2πt)

8π
sin(4πt) +

sin(2πt)
8π

[cos(4πt)− 1]

(As often happens with problems involving trig functions, there are other equivalent expres-
sions.) For case (c), the region of integration is −3 + t ≤ τ ≤ 0. So

y(t) =
∫ 0

−3+t

cos(2πt)
2

dτ −
∫ 0

−3+t

cos(2πt)
2

cos(4πτ) dτ −
∫ 0

−3+t

sin(2πt)
2

sin(4πτ) dτ

=
cos(2πt)

2
(3− t)− cos(2πt)

8π
sin(4πτ)

∣∣∣∣0
τ=−3+t

+
sin(2πt)

8π
cos(4πτ)

∣∣∣∣0
τ=−3+t

=
cos(2πt)

2
(3− t) +

cos(2πt)
8π

sin(4πt)− sin(2πt)
8π

[cos(4πt)− 1]

2. y(t) is plotted below.

1

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, t (seconds)

y(
t)

3. The maximum value of y(t− T) occurs at time T . So I would use this center peak to identify
the delay time T .

4. The adjacent peaks are nearly as tall as the center peak, so if noise were added to the signal,
the tallest peak might not be the center peak, so we might use the wrong peak to determine
the delay time.

5. The chirp signal of Problem S6 produces an ambiguity function with only one prominent peak.
Therefore, the addition of noise should not make it difficult to accurately determine the delay
time.

2

Unified Engineering II Spring 2005

Problem S8 Solution (Signals and Systems)

1. g(t) =
{

te−at, t ≥ 0
0, t < 0

Therefore,

G(s) =
∫ ∞

0
te−ate−st dt

Integrate by parts to obtain

G(s) = − t

s + a
e−(a+s)t

∣∣∣∣∞
t=0

+
1

s + a

∫ ∞

0
e−ate−st dt

If Re[s] > −a, then the first term evaulates to 0; otherwise, it is undefined. The
integral is just the LT of e−atσ(t). Therefore,

G(s) =
1

s + a

∫ ∞

0
e−ate−st dt

=
1

(s + a)2
, Re[s] > −a

2. g(t) =
{

t2e−at, t ≥ 0
0, t < 0

Integrate by parts twice to obtain

G(s) =
2

(s + a)3
, Re[s] > −a

3. g(t) =
{

tne−at, t ≥ 0
0, t < 0

, where n is a positive integer.

In general,

G(s) =
n!

(s + a)n+1
, Re[s] > −a

4. g(t) = e−(t−a)2/2b2 , for all t.

The LT is given by

G(s) =
∫ ∞

−∞
e−(t−a)2/2b2e−st dt

To evaluate the integral, use the fact that we know the integral∫ ∞

−∞
e−u2/2 du =

√
2π

The trick is to put our integral in that form, using a change of variables. The exponent
of the LT integral is

−(t− a)2/2b2 − st = −t2 −
(
s− a

b2

)
t +

a2

2b2

1

We next “complete the square” to obtain

−(t− a)2/2b2 − st = −(t− a + b2s)/2b2 + b2s2/2− as

Therefore, the LT integral becomes

G(s) =
∫ ∞

−∞
e−(t−a+b2s)2/2b2eb2s2/2−as dt

Make the change of variables

u =
t− a + b2s

b

du =
dt

b

Then the LT integral becomes

G(s) =
∫ ∞

−∞
e−u2/2eb2s2/2−as b du

=
√

2π b eb2s2/2−as

This LT converges for all s.

2

Unified Engineering II Spring 2005

Problem S7 Solution (Signals and Systems)

1.

E1

-

+

+

-

y(t)

R

u(t)

C

C

We can use impedance methods to solve for Y (s) in terms of U(s). Label ground and
E1 as shown. Then KCL at E1 yields

Cs(E1 − 0) +
(

Cs +
1
R

)
(E1 − U) = 0

Simplifying, we have (
2Cs +

1
R

)
E1 =

(
Cs +

1
R

)
U

Since we are finding the step response,

U(s) =
1
s
, Re[s] > 0

Plugging in numbers, we have

(0.2s + 0.5)E1(s) = (0.1s + 0.5)
1
s

Solving for E1, we have

E1(s) =
0.1s + 0.5

(0.2s + 0.5)s
=

0.5s + 2.5
s(s + 2.5)

The region of convergence must be Re[s] > 0, since the step response is causal, and
the pole at s = 0 is the rightmost pole. Using partial fraction expansions,

E1(s) =
1
s
− 0.5

s + 2.5

Therefore, gs(t) = y(t) = e1(t) is the inverse transform of E1(t), so

y(t) =
(
1− 0.5e−2.5t

)
σ(t)

The step response is plotted below:

1

−0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time, t (s)

st
ep

 r
es

po
ns

e,
 g

s(t
)

Normal differential equation methods are difficult to apply, because we cannot apply
the normal initial condition that e1(0) = 0. This is because the chain of capacitors
running from the voltage source to ground causes there to be an impulse of current at
time t = 0, and the voltages across the capacitors change instantaneously at t = 0. It
is possible to use differential equation methods, we just have to be more careful about
the initial conditions. However, Laplace methods are easier.

2

2.

-

+

+

-

y(t)u(t)

E2E1

��

��

��

��

Again, use impedance methods, using the node labelling above. Then the node equa-
tions are

(C1s + G1)E1 − C1sE2 = G1U
−C1sE1 + [(C1 + C2)s + G2]E2 = 0

where G = 1/R. We can use Cramer’s rule to solve for E2:

E2(s) =

∣∣∣∣ C1s + G1 G1U(s)
−C1s 0

∣∣∣∣∣∣∣∣ C1s + G1 −C1s
−C1s (C1 + C2)s + G2

∣∣∣∣
=

G1C1s

C1C2s2 + (G1C1 + G1C2 + G2C1)s + G1G2
U(s)

Since we are finding the step response,

U(s) =
1
s
, Re[s] > 0

Plugging in numbers, we have

Y (s) = E2(s) =
0.1s

0.06s2 + 0.35s + 0.25
1
s

=
5/3

s2 + 5.8333̄s + 4.1666̄

In order to find y(t), we must expand Y (s) in a partial fraction expansion. To do so,
we must factor the denominator, using either numerical techniques or the quadratic
formula. The result is

s2 + 5.8333̄s + 4.1666̄ = (s + 5)(s + 0.8333̄)

We can use the coverup method to factor Y (s), so that

Y (s) =
5/3

(s + 5)(s + 0.8333̄)
=
−0.4
s + 5

+
0.4

s + 0.8333̄

The region of convergence must be Re[s] > −0.8333̄, since the step response is causal,
and the r.o.c. is to the right of the right-most pole. Therefore, the step response is
given by the inverse transform of Y (s), so that

gs(t) =
(
−0.4e−5t + 0.4e−0.8333̄t

)
σ(t)

The step response is plotted below:

3

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

Time, t (sec)

S
te

p
re

sp
on

se
, g

s(t
)

4

Unified Engineering II Spring 2005

Problem S10 Solution (Signals and Systems)

1. Because the numerator is the same order as the denominator, the partial fraction
expansion will have a constant term:

G(s) =
3s2 + 3s − 10

s2 − 4

=
3s2 + 3s − 10
(s − 2)(s + 2)

= a +
b

s − 2
+

c

s + 2

To find a, b, and c, use coverup method:

a = G(s)|s=∞ = 3

b =
3s2 + 3s − 10

s + 2

∣∣∣∣
s=2

= 2

c =
3s2 + 3s − 10

s − 2

∣∣∣∣
s=−2

= 1

So

G(s) = 3 +
2

s − 2
+

1
s + 2

, Re[s] > 2

We can take the inverse LT by simple pattern matching. The result is that

g(t) = 3δ(t) +
(
2e2t + e−2t

)
σ(t)

2.

G(s) =
6s2 + 26s + 26

(s + 1)(s + 2)(s + 3)

=
a

s + 1
+

b

s + 2
+

c

s + 3

Using partial fraction expansions,

a =
6s2 + 26s + 26
(s + 2)(s + 3)

∣∣∣∣
s=−1

= 3

b =
6s2 + 26s + 26
(s + 1)(s + 3)

∣∣∣∣
s=−2

= 2

c =
6s2 + 26s + 26
(s + 1)(s + 2)

∣∣∣∣
s=−3

= 1

So
G(s) =

3
s + 1

+
2

s + 2
+

1
s + 3

, Re[s] > −1

The inverse LT is given by (
3e−t + 2e−2t + e−3t

)
σ(t)

1

3. This one is a little tricky — there is a second order pole at s = −1. So the partial
fraction expansion is

G(s) =
4s2 + 11s + 9
(s + 1)2(s + 2)

=
a

s + 1
+

b

(s + 1)2
+

c

s + 2

We can find b and c by the coverup method:

b =
4s2 + 11s + 9

s + 2

∣∣∣∣
s=−1

= 2

c =
4s2 + 11s + 9

(s + 1)2

∣∣∣∣
s=−2

= 3

So
G(s) =

a

s + 1
+

2
(s + 1)2

+
3

s + 2

To find a, subtract the second and third terms from above, to obtain

a

s + 1
= G(s) − 2

(s + 1)2
− 3

s + 2

=
4s2 + 11s + 9
(s + 1)2(s + 2)

− 2
(s + 1)2

− 3
s + 2

=
4s2 + 11s + 9 − 2(s + 2) − 3(s + 1)2

(s + 1)2(s + 2)

=
s2 + 3s + 2

(s + 1)2(s + 2)

=
1

(s + 1)

Therefore,

G(s) =
1

s + 1
+

2
(s + 1)2

+
3

s + 2
, Re[s] > −1

The inverse LT is then

g(t) =
(
e−t + 2te−t + 3e−2t

)
σ(t)

4. This problem is similar to above. The partial fraction expansion is

G(s) =
4s3 + 11s2 + 5s + 2

s2(s + 1)2
=

a

s
+

b

s2
+

c

s + 1
+

d

(s + 1)2

We can find b and d by the coverup method

b =
4s3 + 11s2 + 5s + 2

(s + 1)2

∣∣∣∣
s=0

= 2

d =
4s3 + 11s2 + 5s + 2

s2

∣∣∣∣
s=−1

= 4

So

G(s) =
4s3 + 11s2 + 5s + 2

s2(s + 1)2
=

a

s
+

2
s2

+
c

s + 1
+

4
(s + 1)2

2

To find a and c, subtract both terms from both sides, so that

a

s
+

c

s + 1
= G(s) − 2

s2
− 4

(s + 1)2

=
4s3 + 11s2 + 5s + 2

s2(s + 1)2
− 2

s2
− 4

(s + 1)2

=
4s3 + 11s2 + 5s + 2 − 2(s + 1)2 − 4s2

s2(s + 1)2

=
4s3 + 5s2 + s

s2(s + 1)2
=

s(4s + 1)(s + 1)
s2(s + 1)2

=
4s + 1

s(s + 1)
=

1
s

+
3

s + 1

So
G(s) =

1
s

+
2
s2

+
3

s + 1
+

4
(s + 1)2

and
g(t) =

(
1 + 2t + 3e−t + 4te−t

)
σ(t)

5. G(s) can be expanded as

G(s) =
s3 + 3s2 + 9s + 12
(s2 + 4) (s2 + 9)

=
s3 + 3s2 + 9s + 12

(s + 2j)(s − 2j)(s + 3j)(s − 3j)

=
a

s + 2j
+

b

s − 2j
+

c

s + 3j
+

d

s − 3j

The coefficients can be found by the coverup method:

a =
s3 + 3s2 + 9s + 12

(s − 2j)(s + 3j)(s − 3j)

∣∣∣∣
s=−2j

= 0.5

b =
s3 + 3s2 + 9s + 12

(s + 2j)(s + 3j)(s − 3j)

∣∣∣∣
s=+2j

= 0.5

c =
s3 + 3s2 + 9s + 12

(s + 2j)(s − 2j)(s − 3j)

∣∣∣∣
s=−3j

= 0.5j

d =
s3 + 3s2 + 9s + 12

(s + 2j)(s − 2j)(s + 3j)

∣∣∣∣
s=+3j

= −0.5j

Therefore

G(s) =
0.5

s + 2j
+

0.5
s − 2j

+
0.5j

s + 3j
+

−0.5j

s − 3j
, Re[s] > 0

and the inverse LT is

g(t) = 0.5
(
e−2jt + e2jt + je−3jt − je3jt

)
σ(t)

This can be expanded using Euler’s formula, which states that

eajt = cos at + j sin at

3

Applying Euler’s formula yields

g(t) = (cos 2t + sin 2t) σ(t)

4

Problem C8. Algorithm Complexity

Compute the complexity of the code shown below using:

a. Iteration
b. Simplified Master Method (last slide in lecture 9)

procedure My_New_Sort(

A : in out my_array; left: in integer; right in integer

)is

first_split : integer;

second_split : integer;

begin

if (left < right) then c1

first_split := (left + right) / 3 ; c2

second_split := (first_split + right)/2; c2

My_New_Sort(A, left, first_split); T(n/3)

My_New_Sort(A, first_split+1, second_split); T(n/3)

My_New_Sort(A, second_split+1, right); T(n/3)

Merge(A, left, first_split, second_split, right); O(n)

 end if;

end My_New_Sort;

Therefore T(n) = 3T(n/3) + 2c2+c1 + O(n)
 = 3T(n/3) + O(n) + C

Solving the recurrence equation using iteration:
T(n) =
 3T(n/3) + cn
 3(3T(n/3/3) + cn/3) + cn
 32T(n/32) + cn3/3 + cn
 32T(n/32) + cn(3/3 + 1)
 32(3T(n/32/3) + cn/32) + cn(3/3 + 1)
 33T(n/33) + cn(32/32) + cn(3/3 + 1)
 33T(n/33) + cn(32/32 + 3/3 + 1)

 …
 3kT(n/3k) + cn(3k-1/3k-1 + 3k-2/3k-2 + … + 32/32 + 3/3 + 1)

So we have
T(n) = 3kT(n/3k) + cn(3k-1/3k-1 + ... + 32/32 + 3/3 + 1)
For n = 3k (k = log3 n)T(n) = 3kT(1) + cn(3k-1/3k-1 + ... + 32/32 + 3/3 + 1)
 = 3kc + cn(3k-1/3k-1 + ... + 32/32 + 3/3 + 1)
 = c3k + cn(3k-1/3k-1 + ... + 32/32 + 3/3 + 1)
 = cn3k /3k + cn(3k-1/3k-1 + ... + 32/32 + 3/3 + 1)
 = cn(3k/3k + ... + 32/32 + 3/3 + 1)
So with k = log3 n
T(n) = cn(3k/3k + ... + 32/32 + 3/3 + 1)
 = cn(k + 1)
 = cn(log3 n + 1)
 = O(n log n)

Solving the recurrence equation using the simplified Master Method:

T(n) = 3T(n/3) + 2c2+c1 + O(n)
 = 3T(n/3) + O(n) + C

Correlating to the simplified master theorem:

cnk = O(n) → k = 1

aT(n/b) = 3T(n/3)

Therefore: T(n) = O(nk logbn)= O(n1 log3n) = O(n log3 n)

Problem C9. Sorting Arrays

Implement the algorithm from part b [merge two consecutive segments of an array] as the merge procedure in the body of the merge
sort package:

 procedure Merge (
 Input_Array : in out My_Array;
 Lb : in Integer;
 Mid : in Integer;
 Ub : in Integer) is
 -- create a temporary array to store merge sorted values
 Temp : My_Array := (others => 0);
 L_Index, -- index for incrementing through the lower half of the array
 U_Index, -- index for incrementing through the upper half of the array
 M_Index : Integer; -- index for incrementing through the temp array
 begin

 L_Index := Lb; -- Set the lower index to the lower bound of the array
 U_Index := Mid+1; -- Set the upper index to the middle of the array
 M_Index := 1; -- Set the index for the temporary array to 1

 -- This is what it might look like for an array with 10 elements:
 --
 -- L_Index U_Index
 -- Input_Array: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 --
 -- M_Index
 -- Temp: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 --
 -- Think of it as splitting a deck of 10 cards into two decks of 5 cards each.
 -- The lowest valued card between the two decks is removed and put onto the 'Temp' Deck.
 -- This is continued until all 10 cards are on the 'Temp' Deck.

 -- Extrapolating on this analogy:

 -- loop until one of the 5 card decks is gone.
 while L_Index <= Mid and U_Index <= Ub loop
 if Input_Array(L_Index) < Input_Array(U_Index) then
 Temp(M_Index) := Input_Array(L_Index);
 L_Index := L_Index + 1;
 else
 Temp(M_Index) := Input_Array(U_Index);
 U_Index := U_Index + 1;
 end if;
 M_Index := M_Index + 1;
 end loop;

 -- take the cards on the remaining stack and throw them onto the temp stack.
 if L_Index > Mid then
 Temp(M_Index..(M_Index+Ub-U_Index)) :=Input_Array(U_Index..Ub);
 else
 Temp(M_Index..(M_Index+Mid-L_Index)) :=Input_Array(L_Index..Mid);
 end if;

 -- Copy the temp array back onto the 'Input_Array'
 Input_Array(Lb..Ub) := Temp(1..(Ub-Lb+1));
 end Merge;

Problem C10. Sorting Linked Lists

Implement insertion sort in the doubly_linked_list_package body:

 procedure Insertionsort (
 L : in out Doublelist) is
 Temp, -- points to Pos.Next, so we can mess with the Pos pointer
 Pos, -- the node to be removed and reinserted into the list
 Current,
 Previous : Doublelistptr;
 begin
 -- start at the node after the head. Since you can't insert yourself before yourself.
 Pos := L.Head.Next;

 -- loop through the list, looking at each node.
 while Pos /= null loop
 -- before we start messing with the Pos, get a place holder
 -- by saving the position of the next item to be examined.
 Temp := Pos.Next;

 -- Grab the node out of the list and seal the list.
 if Pos.Next /= null then
 -- If the node is in the middle of the list, just put the two ends together.
 Pos.Next.Prev := Pos.Prev;
 Pos.Prev.Next := Pos.Next;
 else
 -- If the node is at the end of the list, set the end of the list to null;
 Pos.Prev.Next:= null;
 end if;
 -- Erase whatever Pos' .Next and .Prev pointers are pointing to.
 Pos.Next := null;
 Pos.Prev := null;

 -- Put the node back into the list.
 if Pos.Element <= L.Head.Element then
 -- when the node to be inserted should be the first in the list
 L.Head.Prev := Pos;
 Pos.Next := L.Head;
 L.Head := Pos;
 Pos.Prev := null;
 else
 Current := L.Head;
 Previous := null;
 -- when the node to be inserted requires traversal of the list
 while Pos.Element > Current.Element loop
 Previous := Current;
 Current := Current.Next;
 if Current = null then
 exit;
 end if;
 end loop;
 Pos.Next := Current;
 Pos.Prev := Previous;
 Previous.Next := Pos;
 if Current /= null then
 Current.Prev := Pos;
 end if;
 end if;

 -- restore the next item to be examined
 Pos := Temp;
 end loop;
 end Insertionsort;

