
Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

 Unified Engineering
Spring 2005

Problem Set #13
Solutions

Unified Engineering II Spring 2005

Problem S17 Solution (Signals and Systems)

Problem Statement: Consider the quadrature modulation/demodulation system shown
below. The purpose of the system is to transmit two signals, x1(t) and x2(t), over the same
frequency band simultaneously. x1(t) and x2(t) are bandlimited signals, with bandwidth
W . That is, their Fourier transforms X1(f) and X2(f) satisfy

X1(f) = 0, |f | ≥ W

X2(f) = 0, |f | ≥ W

The bandwidth is much less than the modulation frequency, f0. The lowpass filters shown
in the diagram are ideal, with transfer function

L(f) =
{

1, |f | < W
0, |f | > W

Find the Fourier transforms of the signals x3(t), x4(t), x5(t), x6(t), x7(t), x8(t), and x9(t)
in terms of X1(f) and X2(f).

cos(2πf0t)

sin(2πf0t)

2 cos(2πf0t)

2 sin(2πf0t)

x9(t)

x8(t)

x7(t)

x6(t)

x4(t)

x3(t)

x2(t)

x1(t) Low Pass Filter

Low Pass Filter

x5(t)

Solution: Define

w1(t) = cos(2πf0t)
w2(t) = sin(2πf0t)
w3(t) = 2 cos(2πf0t)
w4(t) = 2 sin(2πf0t)

The FTs are

W1(f) =
1
2
δ(f − f0) +

1
2
δ(f + f0)

W2(f) =
−j

2
δ(f − f0) +

j

2
δ(f + f0)

W3(f) = δ(f − f0) + δ(f + f0)
W4(f) = −jδ(f − f0) + jδ(f + f0)

1

Therefore,

X3(f) = X1(f) ∗W1(f)

=
1
2
X1(f − f0) +

1
2
X1(f + f0)

X4(f) = X2(f) ∗W2(f)

=
−j

2
X2(f − f0) +

j

2
X2(f + f0)

X5(f) = X3(f) + X4(f)

=
1
2
X1(f − f0) +

1
2
X1(f + f0) +

−j

2
X2(f − f0) +

j

2
X2(f + f0)

X6(f) = X5(f) ∗W3(f)
= X5(f − f0) + X5(f + f0)

=
1
2
X1(f − 2f0) +

1
2
X1(f) +

−j

2
X2(f − 2f0) +

j

2
X2(f)

+
1
2
X1(f) +

1
2
X1(f + 2f0) +

−j

2
X2(f) +

j

2
X2(f + 2f0)

= X1(f) +
1
2
X1(f − 2f0) +

1
2
X1(f + 2f0)

+
−j

2
X2(f − 2f0) +

j

2
X2(f + 2f0)

X7(f) = X5(f) ∗W4(f)
= −jX5(f − f0) + jX5(f + f0)

=
−j

2
X1(f − 2f0) +

−j

2
X1(f)− 1

2
X2(f − 2f0) +

1
2
X2(f)

+
j

2
X1(f) +

j

2
X1(f + 2f0) +

1
2
X2(f)− 1

2
X2(f + 2f0)

= X2(f)− 1
2
X2(f − 2f0)−

1
2
X2(f + 2f0)

+
−j

2
X1(f − 2f0) +

j

2
X1(f + 2f0)

Low-pass filtering x6(t) and x7(t) eliminates all but the low-freqiency terms, so that

X8(f) = X1(f)
X9(f) = X2(f)

2

Unified Engineering II Spring 2005

Problem S18 Solution (Signals and Systems)

Do problem 8.26 from Openheim and Willksy, Signals and Systems, reprinted below:

To begin, label the signals as shown below

1

From the problem statement,

y(t) = [x(t) + A] cos (2πfct + θc)

Define

z(t) = x(t) + A

w(t) = cos (2πfct + θc)

The factor w(t) can be expanded as

w(t) = cos (2πfct + θc) = cos θc cos 2πfct − sin θc sin 2πfct

The Fourier transform of w(t) is then given by

W (f) = F [cos (2πfct + θc)]

=
1
2

cos θc [δ (f − fc) + δ (f + fc)] −
1
2

sin θc [−jδ (f − fc) + jδ (f + fc)]

=
1
2

(cos θc + j sin θc) δ (f − fc) +
1
2

(cos θc − j sin θc) δ (f + fc)

The Fourier transform of z(t) = x(t) + A is given by

Z(f) = F [z(t)] = X(f) + Aδ(f)

Z(f) is bandlimited, because X(f) is, and of course the impulse function is bandlimited.
So the FT of y(t) is given by the convolution

Y (w) = Z(f) ∗ W (f)

=
1
2

[(cos θc + j sin θc) Z(f − fc) + (cos θc − j sin θc) Z(f + fc)]

Next, compute the spectra of y1(t) and y2(t). To do so, we need the spectra of w1(t) and
w2(t):

W1(f) = F [w1(t)] = F [cos 2πfct]

=
1
2

[δ(f − fc) + δ(f + fc)]

W2(f) = F [w2(t)] = F [sin 2πfct]

=
1
2

[−jδ(f − fc) + jδ(f + fc)]

Then

Y1(f) = W1(f) ∗ Y (f)

=
1
2

[Y (f − fc) + Y (f − fc)]

=
1
4

[(cos θc + j sin θc) Z(f − 2fc) + (cos θc − j sin θc) Z(f)]

+
1
4

[(cos θc + j sin θc) Z(f) + (cos θc − j sin θc) Z(f + 2fc)]

=
1
2

cos θc Z(f)

+
1
4

[(cos θc + j sin θc) Z(f − 2fc) + (cos θc − j sin θc) Z(f + 2fc)]

2

Similarly,

Y4(f) = W2(f) ∗ Y (f)

=
1
2

[−jY (f − fc) + jY (f − fc)]

=
−j

4
[(cos θc + j sin θc) Z(f − 2fc) + (cos θc − j sin θc) Z(f)]

+
j

4
[(cos θc + j sin θc) Z(f) + (cos θc − j sin θc) Z(f + 2fc)]

= −1
2

sin θc Z(f)

+
1
4

[(−j cos θc + sin θc) Z(f − 2fc) + (j cos θc + sin θc) Z(f + 2fc)]

Now, when y1(t) and y4(t) are passed through the lowpass filters, the Z(f − 2fc) and
Z(f + 2fc) terms are eliminated, and the Z(f) terms are passed. Therefore,

Y2(f) =
1
2

cos θc Z(f)

Y5(f) = −1
2

sin θc Z(f)

and

y2(t) =
1
2

cos θc z(t)

y5(t) = −1
2

sin θc z(t)

After passing these signals through the squarers, we have

y3(t) =
1
4

cos2 θc z2(t)

y6(t) =
1
4

sin2 θc z2(t)

$y {7}(t)$ is the sum of these, so that

y7(t) = y3(t) + y7(t)

=
1
4

[
cos2 θc z2(t) + sin2 θc z2(t)

]
=

1
4
z2(t)

Finally, r(t) is obtained by passing taking the square root of y7(t), so that

r(t) =
√

z2(t)/4

=
|z(t)|

2

if the positive root is always taken. But z(t) = x(t)+ A is always positive, according to the
problem statement. Therefore,

x(t) = 2r(t) − A

3

Unified Engineering II Spring 2005

Problem S19 (Signals and Systems)

Do problem 8.8 from Openheim and Willksy, Signals and Systems, reprinted below. Note
that this system implements a type of single sideband amplitude modulation. In addition
to parts (a) and (b) below, do part (c).

(c) For a representative spectrum X(f), plot the resulting spectrum Y (f). You may
assume that the spectrum X(f) is real, but plot both the real and imaginary parts of Y (f).
Does this system in fact produce single sideband modulation?

Solution: Label the signals in the problem as below:

1

x
1
(t)

w
1
(t)=

x
2
(t)

x
3
(t)

w
2
(t)=

The Fourier transform of x(t) is given by X(f). Then the FT of x1(t) is given by

X1(f) = H(f)X(f) =

−jX(f), 0 < f < fM

+jX(f), −fM < f < 0
0, |f | > fM

The signal x2(t) is given by
x2(t) = w1(t)x1(t)

where w1(t) = cos 2πfct. The FT of w1(t) is

W1(f) =
1
2
[δ(f − fc) + δ(f + fc)]

The FT of x2(t) is then

X2(f) = X1(f) ∗W1(f)

=
1
2
[X1(f − fc) + X1(f + fc)]

=

− j
2X(f − fc), fc < f < fc + fM

+ j
2X(f − fc), fc − fM < f < fc

− j
2X(f + fc), −fc < f < −fc + fM

+ j
2X(f + fc), −fc − fM < f < −fc

0, else

The signal x3(t) is given by
x3(t) = w2(t)x(t)

2

where w2(t) = sin 2πfct. The FT of w2(t) is

W1(f) =
1
2
[−jδ(f − fc) + jδ(f + fc)]

The FT of x3(t) is then

X3(f) = X(f) ∗W2(f)

=
1
2
[−jX(f − fc) + jX(f + fc)]

=

− j
2X(f − fc), fc < f < fc + fM

− j
2X(f − fc), fc − fM < f < fc

+ j
2X(f + fc), −fc < f < −fc + fM

+ j
2X(f + fc), −fc − fM < f < −fc

0, else

Finally, the FT of y(t) is given by

Y (f) = X2(f) + X3(f)

=

−jX(f − fc), fc < f < fc + fM

0, fc − fM < f < fc

0, −fc < f < −fc + fM

+jX(f + fc), −fc − fM < f < −fc

0, else

=

−jX(f − fc), fc < f < fc + fM

+jX(f + fc), −fc − fM < f < −fc

0, else

First, y(t) is guaranteed to be real if x(t) is real, because if x(t) real, X(f) has conjugate
symmetry, and then Y (f) has conjugate symmetry, which implies y(t) real. Second, x(t)
can be recovered from y(t) as follows. If y(t) is modulated by 2 sin 2πfct, the resulting signal
is z(t) = 2y(t) sin 2πfct, which has FT

Z(f) = −jY (f − fc) + jY (f + fc)

=

−X(f − 2fc), 2fc < f < 2fc + fM

+X(f), −fM < f < 0
+X(f), 0 < f < fM

−X(f + 2fc), −2fc − fM < f < −2fc

0, else

If z(t) is then passed through a lowpass filter, with cutoff at f = ±fM , then the resulting
signal is identical to x(t).

3

counter := 1

i := 1

i <= 5

my_integer := 1

if I mod
2=0

my_integer :=
my_integer + 2

my_integer :=
my_integer + 1

counter > 10

stop*

yes

yes

yes

no

Problem
C17.

*

More Flow Diagramming would follow

There are many ways in which to model
the flow of data through a program. The
short example above is one way.

The important thing to understand is that
even though code may be in hundreds of
different packages and procedures, these
are just ways of dividing the code into
smaller understandable segments. If you
took all the files from one program, it
would be possible to make one large data
flow diagram.

package My_Test_Package is
(i) My_Integer : Integer := 1;

procedure My_Integer_Increment;

procedure My_Integer_Double_Increment;

procedure Manipulate_Integer(
current_integer_value : out integer);

end My_Test_Package;

package body My_Test_Package is

procedure My_Integer_Increment is
begin

(A) My_Integer := My_Integer + 1;
end My_Integer_Increment;

procedure My_Integer_Double_Increment is
begin

(B) My_Integer := My_Integer + 2;
end My_Integer_Double_Increment;

procedure Manipulate_Integer(
Current_Integer_Value : out Integer) is

begin
(C) if My_Integer mod 2 = 0 then

(D) Current_Integer_Value := My_Integer/2;
else

(E) Current_Integer_Value := My_Integer+1;
end if;

end Manipulate_Integer;

end My_Test_Package;

1. with My_Test_Package;
2.
3. with Ada.Text_Io;
4.
5. procedure Demo_Data_Flow is
6. Counter : Integer :=1;
7. My_Test_Integer : Integer;
8.
9. begin
10. for I in 1 .. 5 loop
11. if I mod 2 = 0 then
12. My_Test_Package.My_Integer_Increment;
13. else
14. My_Test_Package.My_Integer_Double_Increment;
15. end if;
16. end loop;
17.
18. loop
19. exit when Counter > 10;
20. My_test_Package.Manipulate_Integer(My_Test_Integer)
21. if My_Test_Integer mod 2 = 0 then
22. Counter := Counter +2;
23. My_Test_Package.My_Integer_Increment;
24. else
25. Counter := Counter +1;
26. My_Test_Package.My_Integer_Double_Increment;
27. end if;
28. Ada.Text_Io.Put("My Test Integer Value is");
29. Ada.Text_Io.Put(Integer'Image(My_Test_Integer));
30. Ada.Text_IO.New_Line;
31. Ada.Text_Io.Put(Integer'Image(Counter));
32. Ada.Text_Io.New_Line;
33. end loop;
34. Ada.Text_Io.Put_Line("Exited Loop");
35. end Demo_Data_Flow;

• Defs on the following lines
1. def My_Integer
6. def Counter
12, (A). def My_Integer
14, (B). def My_Integer
20 (D or E). def My_Test_Integer
22. def Counter
23, (A). def My_Integer
25. def Counter
26, (B). def My_Integer

• Uses on the following lines
12, (A). C-use My_Integer
14, (B). C-use My_Integer
19. P-use Counter
20. P-use My_Integer
21. P-use My_Test_Integer and

C-use My_Test_Integer (D or E)
22. C-use Counter
23, (A). C-Use My_Integer
25. C-use of Counter
26, (B). C-use My_Integer
29. C-use My_Test_Integer
31. C-use Counter

• All defs, some use
1,20 12,20
14,20 23,20
26,20 6,19
22,19 25,19
20,29

	C17-C20_Solutions.pdf
	C18-C20 Solutions.pdf
	~max0002.PDF
	~max0003.PDF
	~max0004.PDF
	~max0005.PDF
	~max0006.PDF
	~max0007.PDF
	~max0008.PDF
	~max0009.PDF
	~max0010.PDF
	~max0011.PDF
	~max0012.PDF
	~max0013.PDF
	~max0014.PDF
	~max0015.PDF

