

The problems in this problem set cover lectures C21, and C22

Download and unzip the following file from the C&P class webpage:

C&P_PSet_Last.zip

Some answers will need to have their answers zipped and uploaded to:

https://spacestation.mit.edu/unified/
 Just kidding!! =)

Problem C21. (Hello World)3

This problem will help you explore the basics of tasking

With the tasking_hello.adb program:

a. Run the program several times. Is there a specific order in which the tasks start?

b. A delay statement is supposed to force a task to give up processor time for another task
to execute. What happens when you delete the ‘delay’ statement?

c. We would like the tasks to be started in a specific order. This is possible by using the
keyword “accept.” Make the tasks start such that the first three outputs are:

“Hello from Task A”
“Hello from Task B”
“Hello from Task C”
…

d. Now we want to make sure that the tasks all execute A followed by B followed by C,
continuously in a loop (This can be done with semaphores – but there is a simpler
implementation. If you would like to play with semaphores, take a look at Lecture 21).

Problem C22. The Lego Printer

Tasking is VERY important in real-time applications, but can be difficult to understand
because it is like trying to coordinate multiple people, dependent on each other, yet all
doing their own things. In the Mars Rover assignment, tasking would have been very
useful to allow one task to measure the spectral quality of the floor while another takes
care of navigation. Check out the Lego Printer in the Unified Lounge (starting
Wednesday afternoon through finals week). It uses several tasks to accomplish some very
basic printing tasks.

Follow the instructions next to the printer to watch it print some basic repeating output.
Below is a simplified excerpt of code that is running on the printer.

a. Task Spool_Motor currently starts even before the sensors are initialized. This is a
problem because the rotation sensor will not be accurately keeping track of where the
paper is. We would like Spool_Motor to start after the ‘printer does some initialization
of sensors.’ Implement this delayed start by modifying the task. (Hint: do not use
‘accept,’ use the keyword ‘new’ in the main procedure)

b. When does the Stop_Over_Spool task start?

c. Task Spool_Motor implements a Floyd-Steinberg control of the motor, faking a
PWM (a method for controlling motor RPM by turning it on and off quickly). Modify the
body of this task so it will spin the motor in the opposite direction when variable
Spool_Motor_Speed is negative.

Some useful subprograms to use are:

Integer=abs(Integer)
OnFwd(Motor_Name)

with Lego;
use Lego;

procedure Main is
 -- TASK 1: This task is designed to stop the printer from spooling
 -- paper continuously after it has spooled the paper through the printer

 task Stop_Over_Spool; -- Specification
 task body Stop_Over_Spool is -- Body
 begin
 while True loop
 if Spool_Rot_Sensor<-59
 -- -59 is the number of rotations needed to clear a sheet of paper
 Stopalltasks(); -- stop ALL tasks including the main program (only in Lego.ads)
 end if;
 end loop;
 end Stop_Over_Spool;

 -- TASK 2: This task is designed to fake a PWM - pulse width modulated
 -- motor signal. While Lego does implement a high frequency PWM, it is insufficient.

 -- Once the task has started, this variable can be changed to adjust motor speed.
 Spool_Motor_Speed : Integer := 0;

--DO SOMETHING FOR (A) HERE

-- Turns on the motor that spools the paper through the printer
-- DO SOMETHING FOR (B) IN THIS TASK

 task body Spool_Motor is
 begin
 while True loop
 OnRev(S_Motor); -- turns the motor on in reverse
 Wait(Spool_Motor_Speed);
 Float(S_Motor);
 Wait(32 - Spool_Motor_Speed);
 end loop;
 end Spool_Motor;

 -- More code to take care of motor speed control follows. . .

begin
 -- Printer does some initialization of sensors

--We start writing!
--DO SOMETHING FOR (A) HERE

 Spool_Motor_Speed := 20;
 Wait(20);
 Spool_Motor_Speed := 30;
 Wait(20);
 -- more code is used to vary the speed of the spool motor and the
 -- motor that controls the print head.

end Main;

