
Massachusetts Institute of Technology
Department of Aeronautics and
Astronautics
Cambridge, MA 02139

 Unified Engineering
Spring 2005

Problem Set #14
Solutions

Underlined sentences are important facts you should know about Ada. Other
programming languages have different specifications. When compiling tasking
programs it might be necessary to dictate the explicit order in which a task starts
and executes

Problem C21. (Hello World)3

a. Run the program several times. Is there a specific order in which the tasks start?

Trick Question. Yes and No. The Ada specification does NOT say in what order
compilers should start tasks. However, the compiler that comes with AdaGide starts
the tasks in the order in which they are defined. Starting a task in a given order does
NOT guarantee that they will continue executing in the same order.

These lines:
 Task_A : Hello ('A', 10);
 Task_B : Hello ('B', 10);
 Task_C : Hello ('C', 10);
Dictate the starting order of the task. Once started, they are scheduled by the
computer as needed.

Therefore, the output for most Ada compilers will start:
Hello from Task A
Hello from Task B
Hello from Task C
--…but after a while the execution order may change:
Hello from Task B
Hello from Task A
Hello from Task C

b. A delay statement is supposed to force a task to give up processor time for another task
to execute. What happens when you delete the ‘delay’ statement?

The Ada specification allows but does not require time-slicing. Time-slicing says that
one task will be allowed X amount of time to run before getting ‘paused’ and
allowing another task to get started or continue execution for the same X amount of
time. Without time-slicing, one task would be allowed to run until completion before
another starts. The length of the time-slice can also vary. AdaGide does support time-
slicing.

Time-slicing in AdaGide typically results in (answers may vary):

Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task AHello from TaskB Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
--newline
--newline
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task B Hello from Task C
Hello from Task C
Hello from Task C
--newline
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B

Note that sometimes the tasks are interrupted in the middle of execution. In this case,
some of the executions were interrupted before the NewLine command could execute.

Interestingly, you can see the variation in time-slicing if you setup AdaGide to output
to a file:

Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task A
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task B
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C
Hello from Task C

The keyword delay allows the task to give away a portion of its time share for
another task to execute.

c. We would like the tasks to be started in a specific order. This is possible by using the
keyword “accept.” Make the tasks start such that the first three outputs are:

“Hello from Task A”
“Hello from Task B”
“Hello from Task C”
…

The line “accept Some_Label” tells the task to stop executing until it is called
with the command “Task_Name.Some_Label.”

with Ada.Text_Io;
use Ada.Text_Io;

procedure Tasking_Hello is
 -- (a) ADDED is
 task type Hello (Message: Character; Num: Positive) is
 entry Startme; -- (a) ADDED entry Startme;
 end Hello; -- (a) ADDED end Hello;

 task body Hello is
 begin
 accept Startme; -- (a) ADDED accept Startme;
 for I in 1..Num loop

 Put("Hello from Task " & Message);
 New_Line;
 delay 0.1;
 end loop;
 end Hello;
 Task_A : Hello ('A', 10);
 Task_B : Hello ('B', 10);
 Task_C : Hello ('C', 10);
begin
 Task_A.Startme; -- (a) ADDED accept Startme;
 Task_B.Startme; -- (a) ADDED accept Startme;
 Task_C.Startme; -- (a) ADDED accept Startme;
end Tasking_Hello;

d. Now we want to make sure that the tasks all execute A followed by B followed by C,
continuously in a loop (This can be done with semaphores – but there is a simpler
implementation. If you would like to play with semaphores, take a look at Lecture 21).

There are a LOT of ways to do this. Here are 2 (Only the modifications significant to
tasking are commented):

SOLUTION 1. A couple of new tasks were introduced. Each task starts the next task
by triggering the accept in each task.

Notice:
1. In order to use the keyword accept in the task body, you need the keyword entry
in the task specification.
2. The task specification has the parameters (Num:Positive)but the header for
the task body does not.

with Ada.Text_Io;
use Ada.Text_Io;

procedure Tasking_Hello is
 task type Helloa (Num: Positive) is
 entry Startme;
 end Helloa;

 task type Hellob (Num: Positive) is
 entry Startme;
 end Hellob;

 task type Helloc (Num: Positive) is
 entry Startme;
 end Helloc;

 Task_A : Helloa (10); -- (b) MOVED EARLIER
 Task_B : Hellob (10);
 Task_C : Helloc (10);

 task body Helloa is
 begin
 for I in 1..Num loop
 accept Startme; -- (b) ADDED accept Startme;
 Put("Hello from Task A");
 New_Line;
 Task_B.Startme; -- (b) ADDED Task_B.Startme;
 end loop;
 end Helloa;

 task body Hellob is
 begin
 for I in 1..Num loop
 accept Startme; -- (b) ADDED accept Startme;
 Put("Hello from Task B");
 New_Line;
 Task_C.Startme; -- (b) ADDED Task_C.Startme;
 end loop;
 end Hellob;

 task body Helloc is
 begin

 for I in 1..Num loop
 accept Startme; -- (b) ADDED accept Startme;
 Put("Hello from Task C");
 New_Line;
 Task_A.Startme; -- (b) ADDED Task_A.Startme;
 end loop;
 end Helloc;

begin
 Task_A.Startme; -- (b) ADDED accept Startme;
end Tasking_Hello;

SOLUTION 2. A loop is used to continuously in the main procedure to trigger the
running of the next task. A protected type is used to make sure that the calls to Put
and New_Line cannot be interrupted by another task.

Notice the way in which the protected type is formatted with a specification
and a procedure specification inside.

with Ada.Text_Io;
use Ada.Text_Io;

procedure Tasking_Hello is
 -- (b) ADDED a protected type
 protected type Display is --
 procedure Text(Message: Character); --
 end Display; --

 protected body Display is --
 procedure Text(Message: Character) is --
 begin --
 Put("Hello from Task " & Message); --
 New_Line; --
 end Text; --
 end Display; --

 Text_Display: Display; -- (b) Define instance of protected type

 task type Hello (Message: Character) is -- (b) CHANGED SPECIFICATION
 entry Startme;
 end Hello;

 task body Hello is
 begin
 loop
 accept Startme; -- (b) ADDED accept Startme; (in loop)
 Text_Display.Text(Message); -- (b) MODIFIED call to protected proc.
 end loop;
 end Hello;

 Task_A : Hello ('A');
 Task_B : Hello ('B');
 Task_C : Hello ('C');

begin
 for I in 1..10 loop -- (b) ADDED for I in 1..10 loop
 Task_A.Startme; -- (b) ADDED accept Startme;
 Task_B.Startme; -- (b) ADDED accept Startme;
 Task_C.Startme; -- (b) ADDED accept Startme;
 end loop; -- (b) ADDED accept Startme;
end Tasking_Hello;

Problem C22. The Lego Printer

Tasking is VERY important in real-time applications, but can be difficult to understand
because it is like trying to coordinate multiple people, dependent on each other, yet all
doing their own things. In the Mars Rover assignment, tasking would have been very
useful to allow one task to measure the spectral quality of the floor while another takes
care of navigation. Check out the Lego Printer in the Unified Lounge (starting
Wednesday afternoon through finals week). It uses several tasks to accomplish some very
basic printing tasks.

Follow the instructions next to the printer to watch it print some basic repeating output.
Below is a simplified excerpt of code that is running on the printer.

a. Task Spool_Motor currently starts even before the sensors are initialized. This is a
problem because the rotation sensor will not be accurately keeping track of where the
paper is. We would like Spool_Motor to start after the ‘printer does some
initialization of sensors.’ Implement this delayed start by modifying the task. (Hint: do
not use ‘accept,’ use the keyword ‘new’ in the main procedure)

with Lego;
use Lego;

procedure Main is
 task Stop_Over_Spool; -- Specification
 task body Stop_Over_Spool is -- Body
 begin
 while True loop
 if Spool_Rot_Sensor<-59
 Stopalltasks();
 end if;
 end loop;
 end Stop_Over_Spool;

 Spool_Motor_Speed : Integer := 0;

 task type Spool_Motor; -- Specification
 type Spool_Motor_Ref is access Spool_Motor;
 S_Ref : Spool_Motor_Ref; -- Body

 task body Spool_Motor is
 begin
 while True loop
 if Spool_Motor_Speed == 0 then
 Float(S_Motor);
 else
 if Spool_Motor_Speed > 0 then
 OnRev(S_Motor);
 else
 OnFwd(S_Motor);
 end if;
 Wait(abs(Spool_Motor_Speed));
 Float(Out_A);
 Wait(32 - abs(Spool_Motor_Speed));
 end if;
 end loop;

 end Spool_Motor;

 -- More code to take care of motor speed control follows. . .

begin
 -- Printer does some initialization of sensors

 -- We start writing!

 S_Ref := new Writer;
 Spool_Motor_Speed := 20;
 Wait(20);
 Spool_Motor_Speed := 30;
 Wait(20);
 -- more code is used to vary the speed of the spool motor and the
 -- motor that controls the print head.

end Main;

b. When does the Stop_Over_Spool task start?

It starts immediately after the keyword begin of the Main procedure.

c. Task Spool_Motor implements a Floyd-Steinberg control of the motor, faking a
PWM (a method for controlling motor RPM by turning it on and off quickly). Modify the
body of this task so it will spin the motor in the opposite direction when variable
Spool_Motor_Speed is negative.

Some useful subprograms to use are:

Integer=abs(Integer)
OnFwd(Motor_Name)

 -- Turns on the motor that spools the paper through the printer
 task body Spool_Motor is
 begin
 while True loop
 if Spool_Motor_Speed == 0 then
 Float(S_Motor);
 else
 if Spool_Motor_Speed > 0 then
 OnRev(S_Motor);
 else
 OnFwd(S_Motor);
 end if;
 Wait(abs(Spool_Motor_Speed));
 Float(Out_A);
 Wait(32 - abs(Spool_Motor_Speed));
 end if;
 end loop;
 end Spool_Motor;

