1. (25%) Three identical airfoils are flying at the same α (three separate flow situations). Airfoil A has recently increased its α, so there's a starting vortex behind it. Airfoil C has recently decreased its α, so there's an opposite "stopping" vortex behind it. Airfoil B has had no change in α. For each part a) and b), circle the statement which is true. Hint: Consider the total velocity seen by each airfoil.
a)
i) $L_{A}^{\prime}<L_{B}^{\prime}<L_{C}^{\prime}$
ii) $L_{A}^{\prime}=L_{B}^{\prime}=L_{C}^{\prime}$
iii) $L_{A}^{\prime}>L_{B}^{\prime}>L_{C}^{\prime}$
iv) $L_{A}^{\prime}<L_{B}^{\prime}>L_{C}^{\prime}$
b)
i) $D_{A}^{\prime}<D_{B}^{\prime}<D_{C}^{\prime}$
ii) $D_{A}^{\prime}=D_{B}^{\prime}=D_{C}^{\prime}$
iii) $D_{A}^{\prime}>D_{B}^{\prime}>D_{C}^{\prime}$
iv) $D_{A}^{\prime}<D_{B}^{\prime}>D_{C}^{\prime}$

2. (35 \%) A deforming airfoil is proposed for aerodynamic control in lieu of an aileron. The airfoil is to be deformed by an actuator with maximum stroke h. Two installations A and B are considered as shown in the figure. The resulting camberlines are:

$$
\begin{aligned}
Z_{A}(x) & =4 h \frac{x}{c}\left(1-\frac{x}{c}\right) \\
Z_{B}(x) & =-h\left(\frac{x}{c}\right)^{2}
\end{aligned}
$$

Determine and compare the following quantities for each installation.
a) The control derivative $d c_{\ell} / d(h / c)$.

The larger this number, the more effective the actuator (good).
Hint: First determine the c_{ℓ} resulting from the imposed h / c deflection.
b) The moment derivative $d c_{m, c / 4} / d(h / c)$.

The larger this number, the larger the structural torque on the wing (bad).

3. (40%) We wish to design the geometry of a rectangular wing which is to have a nearlyconstant circulation distribution and the following parameters:

$$
\begin{aligned}
b & =2 \mathrm{~m} \\
V_{\infty} & =5 \mathrm{~m} / \mathrm{s} \\
\Gamma(y) & \simeq \Gamma_{0}=0.5 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

It is recognized that this $\Gamma(y)$ must drop abruptly to zero at each tip. For simplicity we will also make the following choices:

$$
\begin{aligned}
\alpha_{L=0} & =0 & & \text { (zero-camber airfoil) } \\
\alpha & =0 & & \text { (common ref. axis placed along } \left.V_{\infty}\right)
\end{aligned}
$$

a) First, determine the downwash distribution $w(y)$, and sketch the associated $\alpha_{i}(y)=$ $-w / V_{\infty}$. Give numerical values of α_{i} at the three points $y=0 \mathrm{~m}, 0.75 \mathrm{~m}, 0.95 \mathrm{~m}$.
b) We now choose a constant chord distribution $c(y)=0.2 \mathrm{~m}$. What are the required $c_{\ell}(y)$ and $\alpha_{\text {geom }}(y)$ distributions?
c) What difficulties to you see with trying to build such a wing?

