
 ID number: ________________________________

 0

16.unified

Introduction to Computers and Programming

Examination
4/15/05

9:05 - 10:00am

Prof. I. Kristina Lundqvist
Spring 2005

Grading Section:

Question 1 (20)
Question 2 (20)
Question 3 (15)
Question 4 (15)
Question 5 (20)
Question 6 (10)

Total 100

You have 55 minutes to take this examination. Do not begin until you are instructed to do
so. This is a closed book examination. No external materials are permitted, including
calculators or other electronic devices. All answers must be written in the examination
paper. This examination consists of 6 questions and 12 pages (not including this cover
page). Count the number of pages in the examination paper before beginning and
immediately report any discrepancy to the invigilator. Should you need to do so, you may
continue your answers on the back of pages.

Do not forget to write your ID number on each page.

 ID number: ________________________________

 1

Question 1. (20 points)

 Given the tree shown in Figure 1:

CB

A

ED GF

IH KJ

CB

A

ED GF

IH KJ

Figure 1. Tree with Root at Node with Element A

Note: The labels on the nodes represent the elements (A..K) held by the nodes

a. What is the output of the program shown on next page with the tree as input?

 (7 points)

Assume that the Node_Pointer_Stack package provides the necessary stack subprograms
such as Create, Push, Pop, Empty_Stack, Full_Stack.

b. What is the algorithm implemented by the program? (3 points)

 ID number: ________________________________

 2

-- code for question 1a and 1b
with Node_Pointer_Stack;
use Node_Pointer_Stack;

procedure Question_1_a_b (
 Root : in Nodeptr) is
 Nodeptr_Stack : My_Stack;

begin
 -- create a temporary stack for
 My_Pointer_Stack.Create(Nodeptr_Stack);
 Push (Nodeptr_Stack, Root);

 -- loop until there are no nodes in the stack
 loop
 exit when Empty_Stack(Nodeptr_Stack);
 --get the first node from the stack
 Pop(Nodeptr_Stack, Temp);
 -- display the element
 Ada.Text_Io.Put(Temp.Element);
 Ada.Text_Io.New_Line;
 --if the right child is not null, push it
 if Temp.Right_Child /= null then
 Push(Nodeptr_Stack, Temp.Right_Child);
 end if;
 --if the left child is not null, push it
 if Temp.Left_Child /= null then
 Push(Node_Ptr_Stack, Temp.Left_Child);
 end if;
 end loop;
end Question_1_a_b;

 ID number: ________________________________

 3

c. What is the output of the program shown below, with the tree in Figure 1 as input?
 (10 points)

with Node_Pointer_Stack;
use Node_Pointer_Stack;

procedure Question_1_c (
 Root : in Nodeptr) is
 Nodeptr_Stack : My_Stack;

begin
 -- create a temporary stack for
 My_Pointer_Stack.Create(Nodeptr_Stack);
 Push (Nodeptr_Stack, Root);

 -- loop until there are no nodes in the stack
 loop
 exit when Empty_Stack(Nodeptr_Stack);
 --get the first node from the stack
 Pop(Nodeptr_Stack, Temp);
 -- display the element
 Ada.Text_Io.Put(Temp.Element);
 Ada.Text_Io.New_Line;

 --if the left child is not null, push it
 if Temp.Left_Child /= null then
 Push(Node_Ptr_Stack, Temp.Left_Child);
 end if;

 --if the right child is not null, push it
 if Temp.Right_Child /= null then
 Push(Nodeptr_Stack, Temp.Right_Child);
 end if;

 end loop;
 null;
end Question_1_c;

 ID number: ________________________________

 4

Question 2. (20 points)

a. Find the Minimum weight spanning tree (MST) for the graph shown in Figure 2. Show
all the steps in the computation of the MST. (15 points)

P

Q SR

U

V WT

5 1
2 2
1

29
86

10 4
6

7
4 4

P

Q SR

U

V WT

5 1
2 2
1

29
86

10 4
6

7
4 4

Figure 2.

 ID number: ________________________________

 5

b. Is the MST unique? Justify your answer. (5 points)

 ID number: ________________________________

 6

Question 3. (15 points)

Show the computation of T(n) and the Big-O complexity for the code shown below.

Statement Work
with Ada.Text_Io;

procedure Compute_Increment (
 Row : in Integer;
 Column : in Integer;
 Increment : out Integer) is

begin

 Increment := 1;

 for I in Row -1 .. Row + 1 loop

 for J in Column - 2 .. Column+2 loop

 if I mod 2 = 0 then

 Increment := Increment + 1;

 end if;

 end loop;

 end loop;

 Ada.Text_Io.Put(Integer'Image(Increment));

end Compute_Increment;

a. What is T(n)? (10 points)

T(n) =

b. What is O(n)? (5 points)

O(n) =

 ID number: ________________________________

 7

Question 4. (15 points)
a. What is the algorithm implemented by the code shown below? (5 points)

Note: Assume that the array is sorted in ascending order

procedure Question_4_A (
 Input_Array : in My_Array;
 Lb : in Integer;
 Ub : in Integer;
 Element : in Integer;
 Location : out Integer) is
 Found : Boolean;
 Left_Index,
 Right_Index : Integer;
begin
 Left_Index := Lb;
 Right_Index := Ub;
 Found := False;
 loop
 exit when Found = True or Left_Index > Right_Index;

 if Input_Array((Left_Index+Right_Index)/2) = Element then
 Location := (Left_Index + Right_Index)/2;
 Found := True;
 else
 if Input_Array((Left_Index+Right_Index)/2) < Element then
 Left_Index := ((Left_Index+Right_Index)/2) +1;
 else
 Right_Index := ((Left_Index+Right_Index)/2) -1;
 end if;
 end if;
 end loop;
 if Found = False then
 Location := -1;
 end if;
end Question_4_A;

 ID number: ________________________________

 8

b. Write a recursive implementation (i.e., the actual Ada code) of the
 algorithm from 4.a (10 points)

 ID number: ________________________________

 9

Question 5. (20 points)
a. What is the record declaration for a node with four fields (5 points)
 Element of type character

Sibling of type node pointer
 Left_Child of type node pointer
 Right_Child of type node pointer

b. Write a program (fill out skeleton on next page) to insert a node into a binary search
tree. (15 points)

Note: you should make siblings (nodes with the same parent) point to each other, as
shown in Figure 3.

Sibling

Left_Child

Right_Child

Element30

20 40

15 25

Sibling

Left_Child

Right_Child

Element

Sibling

Left_Child

Right_Child

Element3030

2020 4040

1515 2525

Figure 3. Sibling Connected Tree

 ID number: ________________________________

 10

procedure Question_5_B (
 Root : in out Nodeptr;
 Input_Element : in Element_Type) is
 Temp : Nodeptr;
 --add any local variables you want
begin
 Temp := new Node;
 Temp.Element := Input_Element;
 Temp.Sibling := null;
 Temp.Left_Child := null;
 Temp.Right_Child := null;

 if Root = null then
 Root := Temp;
 else
 --Complete the code

 end if;
end Question_5_B;

 ID number: ________________________________

 11

Question 6 (10 points)

Multiple Choice Questions. For each question, select the correct answer from the choices,
and write the chosen letter in the box provided next to each question.

 Answer
1. Traversing the tree below in depth-first order means visiting the
nodes in the following order:

a. UNFIRUIEDLES!
b. UNIFIEDRULES!
c. UNFIRUIELEDS!

2. The following prefix expression +-23*45 evaluates to:

a. 21
b. 19
c. 9
d. 7

3. Memory can be broken down into a Code, Data, Heap, and Stack
portion. What types of variables are stored in the heap?

a. Variables created by "new"
b. Variables created after "is" and before "begin" in a subprogram
c. Independent variables - like in a scientific experiment

U

N I

F I E D

R U L E S !

 ID number: ________________________________

 12

4. When it comes to a stack, which of the following statements
is true?

a. The process of deleting an object is called Push
b. All insertions of elements take place at the front of the

data structure and deletions of elements take place at the
end of the data structure

c. Stacks are LIFO structures

5. I want one of the upcoming C&P pset to be a Lego problem set

a. Yes
b. No

