ID Number (last four digits) \qquad

Unified Quiz S6
 April 27, 2005

One $81 / 2 " \times 11 "$ sheet (two sides) of notes
No calculators allowed.
No books allowed.

- Put your name on each page of the exam.
- Read all questions carefully.
- Do all work for each problem on the two pages provided.
- Show intermediate results.
- Explain your work --- don't just write equations. Any problem without an explanation can receive no better than a "B" grade.
- Partial credit will be given, but only when the intermediate results and explanations are clear.
- Please be neat. It will be easier to identify correct or partially correct responses when the response is neat.
- Show appropriate units with your final answers.
- Box your final answers.

Exam Scoring

\#1 (15\%)	
\#2 (10\%)	
\#3 (25\%)	
\#4 (25\%)	
\#5 (25\%)	
Total	

A causal, LTI system, G, has impulse response $g(t)$. The Laplace transform of $g(t)$ is

$$
G(s)=\frac{4}{s(s+2)^{2}}
$$

1. What is the region of convergence of the Laplace transform? Explain.
2. Find $g(t)$.
3. Is the system BIBO stable or unstable?

ID number (last four digits)

A causal, LTI system, G, has impulse response $g(t)$ given by

$$
g(t)=\frac{1}{1+t} \sigma(t)
$$

Is the system BIBO stable? Explain.

ID number (last four digits)
\qquad
Given the signals $g(t)$ and $u(t)$ as plotted below, find the signal $y(t)$ given by

$$
y(t)=g(t) * u(t)
$$

Sketch the result in the grid below, as accurately as possible. Explain your reasoning on the page that follows. The grid squares do not have to represent 1 unit - you can chose the units as appropriate to plot the result. Be sure to label the axes of the grid.

Problem 3 (25\%)
ID number (last four digits)

Problem 3
ID number (last four digits)

Consider an LTI system G with input signal $u(t)$ and output signal $y(t)$.

1. What is the definition of the transfer function, $G(s)$?
2. Explain why the transfer function is the Laplace transform of the impulse reponse.

ID number (last four digits)

ID number (last four digits)
Find the step response of the circuit below. The component values are $R=4 \Omega, L=2 \mathrm{H}$.

ID number (last four digits)

