A causal, LTI system, G, has impulse response $g(t)$. The Laplace transform of $g(t)$ is

$$G(s) = \frac{4}{s(s + 2)^2}$$

1. What is the region of convergence of the Laplace transform? Explain.

2. Find $g(t)$.

3. Is the system BIBO stable or unstable?

1. Since G is causal, the R.O.C. is to the right of the rightmost pole, which is at $s=0$. Therefore, the R.O.C. is \[\text{Re}[s] > 0 \]

2. Expand $G(s)$ by partial fraction expansion, using the coverup method:

$$G(s) = \frac{4}{s(s+2)^2} = \frac{1}{s} + \frac{a}{s+2} + \frac{-2}{(s+2)^2}$$

Note that a cannot be determined directly, since the pole at $s=-2$ is 2nd order. Having found the other terms, solve:
\[
\frac{a}{s+2} = \frac{4}{s(s+2)^2} - \frac{1}{s} + \frac{2}{(s+2)^2} \\
= \frac{4 - (s+2)^2 + 2s}{s(s+2)^2} \\
= \frac{-s^2 - 2s}{s(s+2)^2} = \frac{-1}{s+2}
\]

Therefore,

\[g(t) = \left(1 - e^{-2t} - 2t e^{-2t}\right) \delta(t)\]

3. Unstable, since the R.O.C. does not include \(\text{Re}[s] = 0\).
A causal, LTI system, G, has impulse response $g(t)$ given by

$$g(t) = \frac{1}{1+t} \sigma(t)$$

Is the system BIBO stable? Explain.

G is BIBO stable if and only if

$$M = \int_0^\infty |g(t)| \, dt < \infty$$

But

$$M = \int_0^\infty \frac{1}{1+t} \, dt = \ln(1+t) \bigg|_0^\infty = \infty$$

so G is unstable.
Problem 3

Given the signals \(g(t) \) and \(u(t) \) as plotted below, find the signal \(y(t) \) given by

\[
y(t) = g(t) * u(t)
\]

Sketch the result in the grid below, as accurately as possible. Explain your reasoning on the page that follows. The grid squares do not have to represent 1 unit — you can chose the units as appropriate to plot the result. Be sure to label the axes of the grid.
Use graphical convolution. Note that this problem is a little like the smoothing problem — \(g(t) \) looks a little like the smoother from class, but has area 2.

Also, because \(u \) has step discontinuities only, and \(g \) is continuous, \(y(t) \) will be continuous and have continuous slope. In fact, because \(u \) is piecewise constant and \(g \) is piecewise linear, \(y \) will be piecewise quadratic, i.e., little segments of parabolas.

\(t \leq -2 \): For \(t \leq -2 \), \(g(t - \tau) \) and \(u(\tau) \) don't overlap, so \(y(t) = 0 \).

\(t = -1 \):

\[
\begin{array}{c}
\text{Area} = 2
\end{array}
\]

\[\Rightarrow y(-1) = 2 \]
This process can be continued for each \(t \). I got the following table:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(y(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Which, together with remarks above, gives \(y(t) \) plotted on 1st page.
Consider an LTI system G with input signal $u(t)$ and output signal $y(t)$.

1. What is the definition of the transfer function, $G(s)$?

2. Explain why the transfer function is the Laplace transform of the impulse response.

1. For an LTI system, an exponential input $u(t) = e^{st}$ should produce an exponential output, $y(t) = G(s) e^{st}$. The amplitude of the output, $G(s)$, is the transfer function.

2. For an arbitrary input, $u(t)$, the response is

$$y(t) = g(t) * u(t) = u(t) * g(t)$$

For the exponential input,

$$y(t) = e^{st} * g(t)$$

$$= \int_{-\infty}^{\infty} e^{s(t-\tau)} g(\tau) \, d\tau$$

$$= e^{st} \left[\int_{-\infty}^{\infty} e^{-s\tau} g(\tau) \, d\tau \right]$$

$$\equiv \mathcal{L}[g(t)]$$
So the output is

\[y(t) = \mathcal{L}[g(t)] e^{st} \]

Comparing this result and the definition, we must have that the transfer function is

\[G(s) = \mathcal{L}[g(t)] \]
Problem 5 (25%)

Find the step response of the circuit below. The component values are \(R = 4 \Omega, \ L = 2 \text{ H} \).

Using impedance methods, we can reduce the circuit to

which we then treat as a static circuit. The inductor and resistor are in parallel, with equivalent impedance

\[
L_s/|R = \frac{L_s R}{L_s + R} = \frac{8s}{2s + 4} = \frac{4s}{s + 2}
\]

For this simple circuit, all the current \(U(s) \) goes through this single impedance, so
\[Y(s) = \frac{4s}{s+2} U(s) \]

(This is just \(U = iR \). For a step input, \(U(s) = \frac{1}{s} \), \(\text{Re}(s) > 0 \). Also, the circuit is causal, so the transfer function is valid for \(\text{Re}(s) > -2 \). Therefore,)

\[Y(s) = \frac{4s}{s+2} \cdot \frac{1}{s} = \frac{4}{s+2}, \quad \text{Re}(s) > -2 \]

(Note cancellation of factor \(s \)). Therefore,

\[y(t) = y_s(t) = 4e^{-2t} \sigma(t) \]