Unit M4.4 Simple Beam Theory

Readings:

CDL 7.1 - 7.5, 8.1, 8.2

16.003/004 -- "Unified Engineering"
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

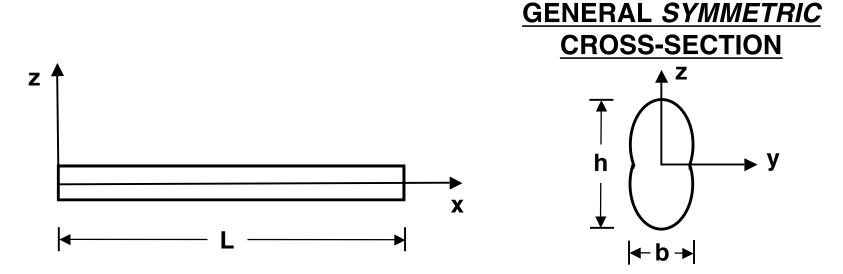
LEARNING OBJECTIVES FOR UNIT M4.4

Through participation in the lectures, recitations, and work associated with Unit M4.4, it is intended that you will be able to......

-describe the aspects composing the model of a beam associated with deformations/displacements and stresses (i.e. Simple Beam Theory) and identify the associated limitations
-apply the basic equations of elasticity to derive the solution for the general case
-identify the beam parameters that characterize beam behavior and describe their role

We have looked at the statics of a beam, but want to go further and look at internal stress and strain and the displacement/ deformation. This requires a particular model with additional assumptions besides those on geometry of "long and slender."

Figure M4.4-1 Geometry of a beam



h and b are "encompassing/extreme" dimensions still have: L >> h, b

Now also consider

Assumptions on Stresses

We have said that loading is in the plane x-z and is transverse to the long axis (the x-axis)

The first resulting assumption from this is:

All loads in y - direction are zero

☐ all stresses in y-direction are zero:

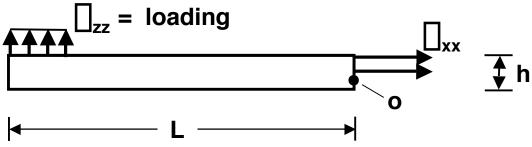
$$\square_{yy} = \square_{xy} = \square_{yz} = 0$$

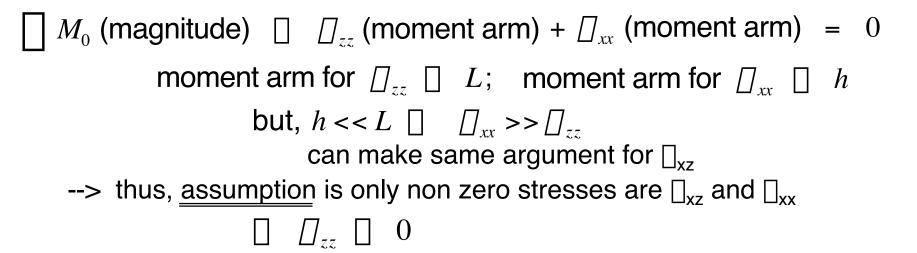
--> Next, we "assume" that the only significant stresses are in the x-direction.

$$\square$$
 \square_{xx} , \square_{xz} >> \square_{zz}

--> Why (valid)? Look at isolated element and moment equilibrium

Figure M4.4-2 Illustration of moment equilibrium of "isolated element" of beam





To complete our model, we need....

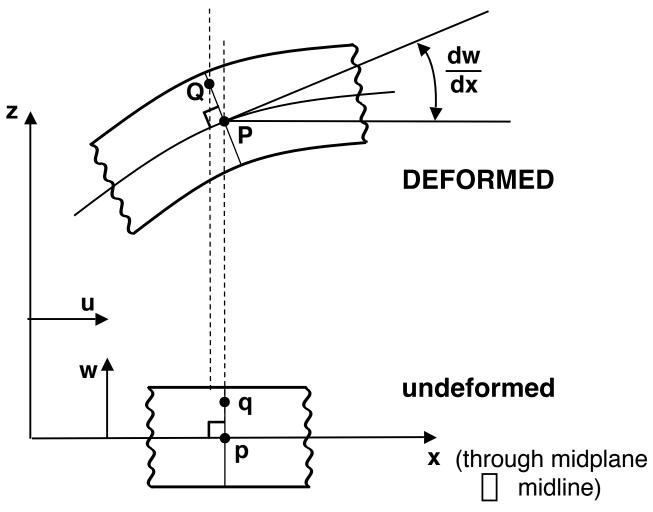
<u>Assumptions on Deformations</u>

The key here is the "Bernouilli-Euler Hypothesis" (~1750):

"Plane sections remain plane and perpendicular to the midplane after deformation"

--> To see what implications this has, consider an infinitessimal element that undergoes bending (transverse) deformation:

Figure M4.4-3 Basic deformation of infinitessimal element to beam according to "plane sections remains plane" (Bernouilli-Euler Hypothesis)

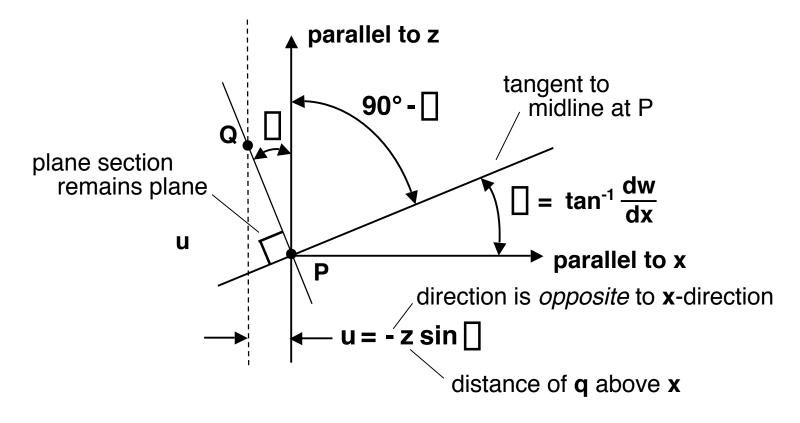


<u>Define</u>: w = deflection of midplane/midline (function of x only)

Unit M4-4 - p. 6

Use geometry to get deflection in x-direction, u, of point q (q to Q)

Figure M4.4-4 Local geometry of deflection of any point of beam



if deformations/angles are small: $\sin \square \square \square$; $\square \square \frac{\partial w}{\partial x}$

Thus, implication of assumption on displacement is:

$$u(x, y, z) = \Box z \frac{dw}{dx}$$
 (1)
 $v(x, y, z) = 0$ (nothing in y-direction)
 $w(x, y, z) = w(x)$ (2) (cross-section deforms as a unit) \Box (plane sections remain plane)

We have all the necessary assumptions as we have the structural member via assumptions on geometry, stress, and displacements/deformations. We now use the Equations of Elasticity to get the....

Resulting Equations

--> First apply the Strain-Displacement Equations....

$$\Box_{xx} = \frac{\partial u}{\partial x} = \Box z \frac{d^2 w}{dx^2} \qquad (3)$$

$$\Box_{yy} = \frac{\partial v}{\partial y} = 0 \qquad \qquad \Box_{zz} = \frac{\partial w}{\partial z} = 0$$

$$\Box_{xy} = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial y} + \frac{\partial \Box}{\partial x} \end{bmatrix} = 0$$

$$\Box_{yz} = \frac{1}{2} \begin{bmatrix} \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \end{bmatrix} = 0$$

$$\Box_{xz} = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{\partial w}{\partial x} + \frac{\partial w}{\partial x} \end{bmatrix} = 0$$

$$\Box_{xz} = \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \end{bmatrix} = 0$$
!!!

- This is consistent with assumption by B-E (no shearing gives plane sections remain plane and perpendicular)
- --> Next use stress-strain.

 We'll go to orthotropic as most general we can do

$$\square_{yy} = \square \square_{xy} \frac{\square_{xx}}{E_x}$$

$$\Box_{zz} = \Box \Box_{xz} \frac{\Box_{xx}}{E}$$

 $\Box_{yy} = \Box \Box_{xy} \frac{\Box_{xx}}{E_x}$ $\Box_{zz} = \Box \Box_{xz} \frac{\Box_{xx}}{E}$ Note: "slight" inconsistency between assumed displacement state and those resulting strains, and the resulting strains from the stress-strain equations

$$\Box_{xy} = \frac{\Box_{xy}}{2G_{xy}} = 0$$

$$\Box_{yz} = \frac{\Box_{yz}}{2G_{yz}} = 0$$

Unit M4-4 - p. 10 Paul A. Lagace © 2007

We "get around" these inconsistencies by saying that \square_{yy} , \square_{zz} , and \square_{zz} are <u>very</u> small but not quite zero. This is an <u>approximation</u> (part of model). Will check this later.

--> Finally use the Equilibrium Equations:

Assumption: no body forces $(f_i = 0)$

$$\frac{\partial \Box_{xx}}{\partial x} + \frac{\partial \Box_{xy}}{\partial y} + \frac{\partial \Box_{zx}}{\partial z} = 0 \quad \Box \quad \frac{\partial \Box_{xx}}{\partial x} + \frac{\partial \Box_{zx}}{\partial z} = 0 \quad (5)$$

$$\frac{\partial \Box_{xy}}{\partial x} + \frac{\partial \Box_{yy}}{\partial y} + \frac{\partial \Box_{zy}}{\partial z} = 0 \quad \Box \quad 0 = 0$$

$$\frac{\partial \Box_{xz}}{\partial x} + \frac{\partial \Box_{yz}}{\partial y} + \frac{\partial \Box_{zz}}{\partial z} = 0 \quad \Box \quad \frac{\partial \Box_{xz}}{\partial x} + \frac{\partial \Box_{zz}}{\partial z} = 0 \quad (6)$$

--> So we have 5 unknowns: w, u, \square_{xx} , \square_{xx} , \square_{xz}

(Note: \square_{zz} is ignored)

--> And we have 5 equations: 1 from geometry: (1)

1 from strain-displacement: (3)

1 from stress-strain: (4)

2 from equilibrium: (5), (6)

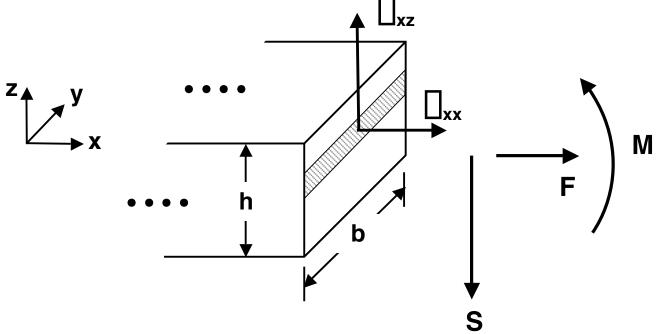
So then we have the right number of equations for the number of unknowns. So we consider the:

Solution: Stresses and Deflections

In doing this, it is first important to relate the point-by-point stresses to the average internal forces (F, S, M).

To do this, consider a cut face (do here for rectangular cross-section; will generalize later)

Figure M4.4-5 Geometry of Equilibrium via stresses on cut face of beam



Unit M4-4 - p. 12

Equilipollence (i.e., equally powerful) shows: (no variation in y)

$$F = \prod_{n/2}^{h/2} \prod_{xx} b dz \tag{7}$$

$$S = \prod_{n/2}^{h/2} \prod_{xz} bdz$$
 (8)

$$M = \prod_{n=1}^{h/2} \prod_{xx} bzdz \qquad (9)$$

--> Now we begin substituting the various equations...

Put (1), (3) in (4) to get:

$$\prod_{xx} = E_x \prod_{xx} = \prod E_x z \frac{d^2 w}{dx^2} \tag{10}$$

Now put this in (7):

$$F = \prod_{x} \frac{d^{2}w}{dx^{2}} \prod_{h/2}^{h/2} zbdz$$

$$= \prod_{x} \frac{d^{2}w}{dx^{2}} \frac{z^{2}}{2} b \prod_{h/2}^{h/2} = 0 \quad \text{since no axial force in pure beam case}$$

(Note: something that carries axial and bending forces is known as a beam-column/rod)

--> we also place the result for \square_{xx} (10) in the equation for the internal moment (9):

$$M = E_x \frac{d^2 w}{dx^2} \prod_{n/2}^{h/2} z^2 b dz$$

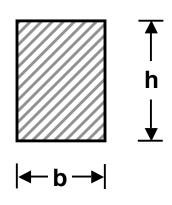
we define:

$$I = \prod_{h/2}^{h/2} z^2 b dz$$
 = Area (Second) (11 Moment of Inertia of beam cross-section [about y-axis]

Note: For rectangular cross-section

$$I = \frac{bh^3}{12}$$

--> will look at this further in next unit



This results in the following:

$$M = E_x I \frac{d^2 w}{dx^2}$$
 (12)

Moment-Curvature relation for beam

Note: EI is controlling parameter - "flexural rigidity" or "bending stiffness". Has:

- geometrical contribution, I
- material contribution, E

- units:
$$[F \bullet L] = \begin{bmatrix} F \\ L^2 \end{bmatrix} \begin{bmatrix} L^4 \end{bmatrix} \begin{bmatrix} L \\ L^2 \end{bmatrix}$$

--> Can also relate the internal shear, S, to these parameters. Use equation (5):

$$\frac{\partial \Box_{zx}}{\partial z} = \Box \frac{\partial \Box_{xx}}{\partial x} \tag{5}$$

Multiply each side by b and integrate from z to h/2 to get:

First take (12) and put it in (10):

$$\Box_{xx} = \Box E_{x}z \frac{d^{2}w}{dx^{2}} = \Box E_{x} z \frac{M}{E_{x}I}$$

$$\Box \Box_{xx} = \Box \frac{Mz}{I} \qquad (13)$$
Units:
$$\Box F \Box = CFL \Box L$$

Now, work on integrating the pending equation:

Note that the \square_{xz} at the top of surface is zero.

Also <u>define</u>:

$$Q = \prod_{z=1}^{h/2} zbdz$$
 (first) Moment of = area about the center

So:

$$\left| \Box_{xz} \left(z \right) \right| = \left| \Box \frac{SQ}{Ib} \right| \tag{15}$$

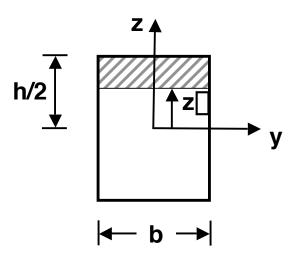
shear stress-Shear relation

For a rectangular section:

Figure M4.4-6 Geometry for assessing (first) moment of area about

centerline

Paul A. Lagace © 2007



$$Q = \int_{z_{0}}^{h/2} zbdz$$

$$= \frac{z^{2}}{2}b \int_{z_{0}}^{h/2} = \frac{b}{2} \left[\frac{h^{2}}{4} \quad \Box z \right]^{2}$$

(maximum at z = 0, the centerline)

--> Again, will look at this further and generalize in the next unit

Unit M4-4 - p. 18

The summary of how we can solve for the stress/strain/displacement states in a beam is presented in handout M-5

In the next section, we look at what this solution generally means and examine it for various situations.

Unit M4.4 (New) Nomenclature

EI -- flexural rigidity or boundary stiffness of beam cross-section

I -- Area (Second) Moment of Inertia of beam cross-section (about y-axis)

Q -- (First) Moment of area above the centerline

u -- deflection of point of beam in x-direction

v -- deflection of point of beam in y-direction

w -- deflection of (midpoint/midline of) beam in z-direction

 \square -- slope of midplane of beam at any point x (= dw/dx)

d²w/dx² -- curvature of beam (midplane/midline) at any point x of beam

 \square_{xx} -- beam bending stress

 \square_{xz} -- beam transverse shear stress