Unit M4.6 Torsion of Rods/Shafts

Readings:

CDL 6.1-6.5

16.003/004 -- "Unified Engineering"
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M4.6

Through participation in the lectures, recitations, and work associated with Unit M4.6, it is intended that you will be able to.......

-describe the key aspects composing the model of a (torsional) shaft and identify the associated limitations
-apply the basic equations of elasticity to derive the solution for the general case
-identify the parameters that characterize torsional behavior and describe their role

Thus far we've considered a long slender member under axial load (rod) and bending load (beam). Let's now look at a long slender member subjected to a torque. This is a <u>shaft</u>.

Let's begin with the...

Definition of a Shaft

A <u>shaft</u> is a structural member that is long and slender and subjected to a torque moment about its long axis.

Consider each of the three points that make up the definition and the true reality...

- --> Modeling Assumptions
 - a) Geometry

(go back to indicial notation because it makes it easier to manipulate)

Figure M4.6-1 General geometry of shaft

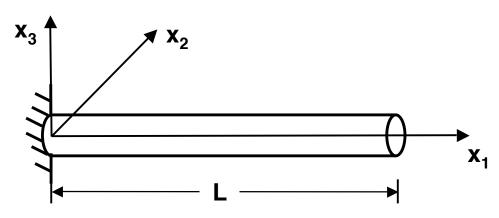
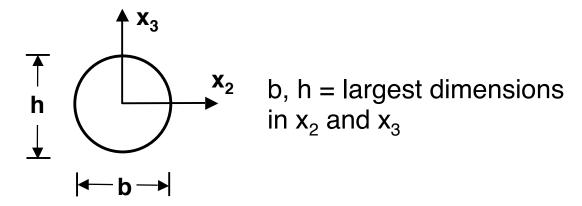


Figure M4.6-2 Cross-section of shaft



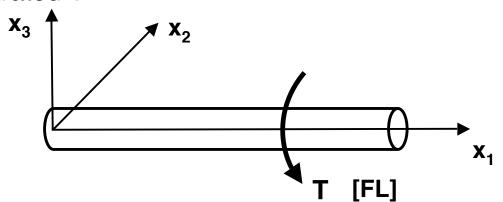
Assumption: "long" in x_1 -direction L >> b, h (slender member)

Note: same as before

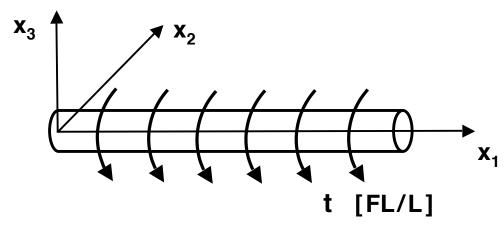
b) Loading

Assumption: Torque Moment about x₁-direction

- concentrated T



- distributed



No axial loads

 \square at boundaries: $\square_{11} = \square_{22} = \square_{33} = 0$

finally look at:

c) Deformation

Assumptions:

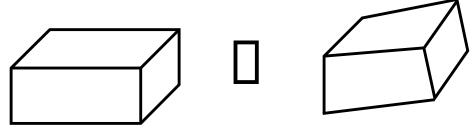
At any location x₁, the cross-section rotates as a rigid body
 (☐ no distortion of cross-section)

Note: can also say "plane sections remain plane and perpendicular to midline"

 No deformation of cross-section in x₁-direction (no bending or extension)

Only deformation is rotation of cross-section through a twist angle.

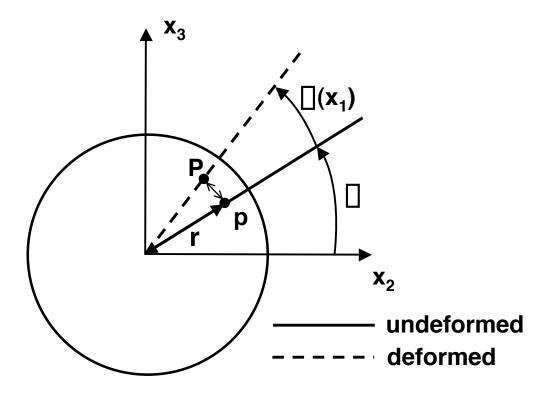
Define twist angle, \square , as function of $x_1 = \square(x_1)$. Think of deck of cards:



We can, by geometry, relate the deformations, u_i , to the twist/rotation angle $\square(x_1)$.

Consider a cross-section at location x_1 , and a point in a circular cross-section at angle \square from the reference axes.

Figure M4.6-2 Illustration of deformation of shaft cross-section

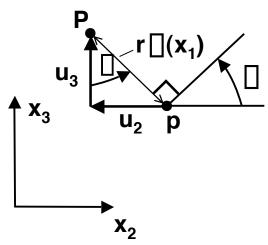


- Distance point p rotates (p to P) = r sin $\square(x_1)$
- For small angles (<u>assumed</u> here)

 \square distance = $r \square (x_1)$

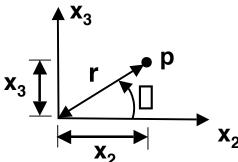
Resolve into components along x_2 and x_3

Figure M4.6-3 Resolution of deformation into components along x₂ and x₃



$$u_3 = + r \square (x_1) \cos \square$$

And \square is defined by the x_2 and x_3 location of p



$$r = \sqrt{x_2^2 + x_3^2}$$

$$\sin \square = \frac{x_3}{r}$$

$$\cos \square = \frac{x_2}{r}$$

So:

$$u_{2} = \prod \sqrt{x_{2}^{2} + x_{3}^{2}} \prod (x_{1}) \frac{x_{3}}{\sqrt{x_{2}^{2} + x_{3}^{2}}} = \prod (x_{1}) x_{3}$$

$$u_{2} = \prod \sqrt{x_{2}^{2} + x_{3}^{2}} \prod (x_{1}) \frac{x_{3}}{\sqrt{x_{2}^{2} + x_{3}^{2}}} = \prod (x_{1}) x_{3}$$

$$u_3 = \sqrt{x_2^2 + x_3^2} \square (x_1) \frac{x_2}{\sqrt{x_2^2 + x_3^2}} = \square (x_1) x_2$$

And we have, by assumption, no axial displacement. So the assumed displacement state is:

$$u_1 = 0 \tag{1}$$

$$u_2 = \square \square (x_1) x_3 \qquad (2)$$

$$u_3 = \prod (x_1)x_2 \tag{3}$$

Let's now use the definitions in the equations of elasticity to get the...

Governing Equations

--> Strain-Displacement

 $\prod_{1} = \frac{\partial u_{1}}{\partial x_{1}} = 0$ consistent with assumption that cross-section does not deform in x

$$\Box_{22} = \frac{\partial u_2}{\partial x_2} = \mathbf{0}$$

$$\frac{\partial x_2}{\partial x_2} = 0$$

 $\Box_{22} = \frac{\partial u_2}{\partial x_2} = 0$ $\Box_{33} = \frac{\partial u_3}{\partial x_3} = 0$ consistent with assumption that cross-section does not distort

$$\square_2 = \frac{1}{2} \left| \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right| = \square \frac{1}{2} x_3 \frac{d\square}{dx_1}$$
 (4)

$$\square_3 = \frac{1}{2} \left[\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right] = \frac{1}{2} x_2 \frac{d\square}{dx_1}$$
 (5)

Unit M4-6 p. 10 Paul A. Lagace © 2007

Note:
$$\frac{\partial}{\partial x_1} \square \frac{d}{dx_1}$$
 since \square is a function of x_1 only (partial) (total)

Finally:
$$\square_{23} = \frac{1}{2} \begin{bmatrix} \frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \end{bmatrix} = \frac{1}{2} \left(\square (x_1) + \square (x_1) \right) = 0$$

also is consistent with assumption that cross-section does not distort

Next go to...

--> Stress-Strain Equations

(do for <u>isotropic</u> only one shear modulus)

Since \square_{11} , \square_{22} , and $\square_{33} = 0$ \square_{11} , \square_{22} , $\square_{33} = 0$

(consistent: no axial stresses)

$$\square_{23} = \frac{\square_{23}}{2G} = 0 \square \square_{23} = 0$$

$$\square_2 = \frac{\square_{12}}{2G} \tag{6}$$

$$\underline{\square}_3 = \frac{\underline{\square}_{13}}{2G} \tag{7}$$

 \square only \square_{12} and \square_{13} are present

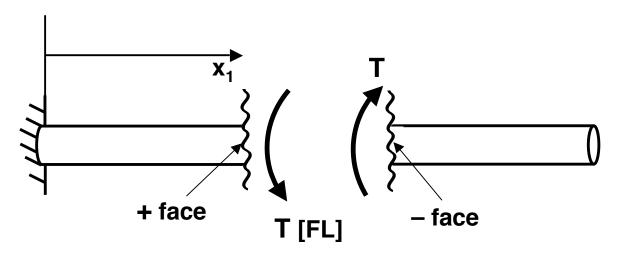
Finally we look at...

--> Equilibrium Equations

First we again define an internal stress resultant for the structural configuration. In this case, it will be the torque moment at any point.

Cutting the shaft.....

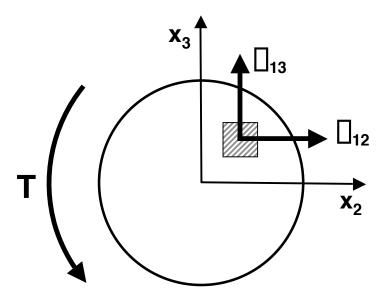
Figure M4.6-4 Illustration of cutting shaft through cross-section and considering internal torque



+ right hand rule -- gives equal and opposite

Express **T** in terms of the stress:

Figure M4.6-5 Illustration of equipollence consideration for shaft crosssection



equivalence/equipollence:

So using equations of equilibrium (considering only non zero stresses)

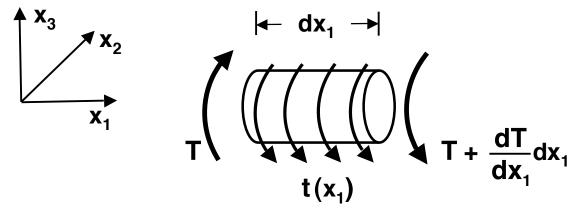
$$\frac{\partial \square_{21}}{\partial x_2} + \frac{\partial \square_{31}}{\partial x_3} + \mathcal{I}_{\mathbf{A}} = 0 \tag{9}$$

$$\frac{\partial \Box_{12}}{\partial x_1} + f_2 = 0 \tag{10}$$

$$\frac{\partial \square_{13}}{\partial x_1} + f_3 = 0 \tag{11}$$

Now look at the equilibrium of a discrete segment (as we have in the past)

Figure M4.6-6 Geometry for consideration of equilibrium of a discrete segment



"Torque-loading Relation"

like
$$\frac{dS}{dx} = q(x)$$

Note: Can show average equilibrium relations [resulting in (12)] are consistent with pointwise relations [(9) - (11)].

We now have 6 unknowns (T, \square_{12} , \square_{13} , \square_{12} , \square_{13} , \square) and 6 equations { (4), (5), (6), (7), (8), (12) }. This allows us to solve the problem for this model.

So let's look at.....

Solution and Limitations of Model

Put equations (4) and (5) [Strain-Displacement] into the stress-strain equations (6) and (7):

$$\Box_{12} = 2G\Box_{12} = 2G \boxed{\frac{1}{2}} x_3 \frac{d\Box}{dx_1}$$

$$\Box_{12} = \Box Gx_3 \frac{d\Box}{dx_1}$$

$$\Box_{13} = 2G\Box_{13} = 2G \boxed{\frac{1}{2}} x_2 \frac{d\Box}{dx_1}$$

$$\Box_{13} = Gx_2 \frac{d\Box}{dx_2}$$
(13)

Now place these results into the torque-stress equilibrium equation (8):

Define:

$$J \equiv \left| \prod (x_2^2 + x_3^2) dA \right| \tag{15}$$

= polar (second) moment of inertia

$$= \frac{\sqrt{R^4}}{2}$$
 for circle

So we write:

$$T = GJ \frac{d\square}{dx_1}$$
 (16)

"Torque-Twist" relation

Note, again, overall "structural constitutive relation"

$$T = GJ \frac{d\square}{dx_1}$$

(load) = (stiffness)(deformation)

Structural stiffness here is torsional stiffness = GJ composed of two parts:

G - material contribution/parameter J - geometrical contribution/parameter

similar to bending:

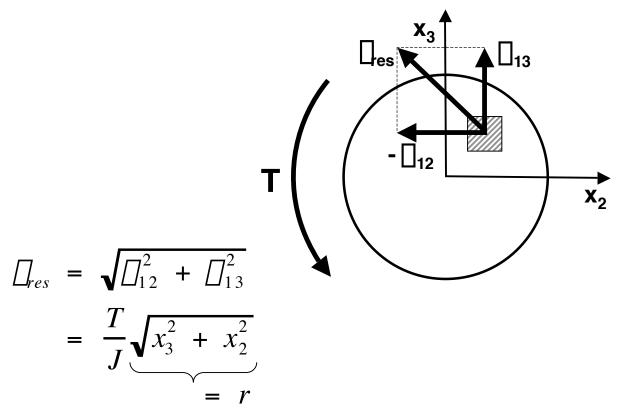
$$M = E_x I \frac{d^2 w}{dx^2}$$

We can use the result $G \frac{d\square}{dx_1} = \frac{T}{J}$ in equations (13) and (14) to relate stress to torque:

$$\square_{12} = \square \frac{Tx_3}{J} \tag{17}$$

Finally, can express the stress as a shear stress resultant:

Figure M4.6-7 Illustration of shear stress resultant



$$\square_{res} = \frac{Tr}{J} \tag{19}$$

Note similarity to bending:

$$\Box_{xx} = \Box \frac{Mz}{I}$$

form:

Use of Model

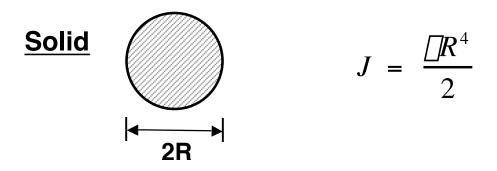
Very similar to rod, beam...

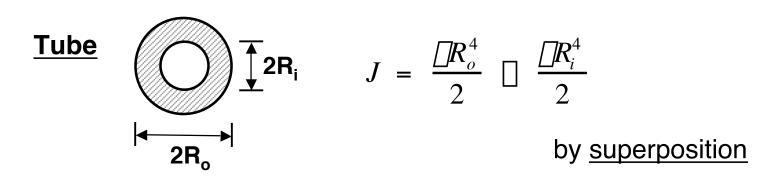
- 1. Draw Free Body Diagram, determine reactions
- 2. Get internal stress resultant T(x₁)
- 3. Determine section property G J polar momen material of inertia constant
- 4. Use equation (16) to find rate of twist $\frac{d\Box}{dx_1}$
- 5. Use equations (17), (18), and (19) to determine stresses
- 6. Determine strains and displacements as needed

let's think about the...

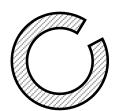
--> <u>Limitations of the model</u>

The assumptions give us an exact solution for circular <u>closed</u> crosssections:



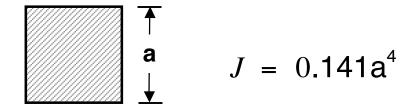


Not good for an open section, for example...



<u>Approximate</u> for other closed sections:

e.g., **Square**



(assumption of no deformation of cross-section violated --> "warping")
[more in 16.20]

We'll next look at a rod under compression and look at an instability phenomenon known as "buckling". In this case, we call the structural member a **column**.

Unit M4.6 (New) Nomenclature

G -- shear modulus (isotropic material)

GJ -- torsional stiffness

J -- polar (second) moment of inertia

R_o -- outer radius

R_i -- inner radius

T -- applied point torque load

t -- applied distributed torque load

☐_{es} -- shear stress resultant

□ -- twist angle